
DataMan®

Communications and

Programming Guide

12/2/2011
Version 4.2

www.hvssystem.com

Siège social :
2 rue René Laennec
51500 Taissy
France

Contact :
hvssystem@hvssystem.com

Tél : 0326824929
Fax : 0326851908

Distribué par :

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 2

Legal Notices

The software described in this document is furnished under license, and may be used or

copied only in accordance with the terms of such license and with the inclusion of the

copyright notice shown on this page. Neither the software, this document, nor any copies

thereof may be provided to, or otherwise made available to, anyone other than the

licensee. Title to, and ownership of, this software remains with Cognex Corporation or its

licensor. Cognex Corporation assumes no responsibility for the use or reliability of its

software on equipment that is not supplied by Cognex Corporation. Cognex Corporation

makes no warranties, either express or implied, regarding the described software, its

merchantability, non-infringement or its fitness for any particular purpose.

The information in this document is subject to change without notice and should not be

construed as a commitment by Cognex Corporation. Cognex Corporation is not responsible

for any errors that may be present in either this document or the associated software.

No part of this document may be reproduced or transmitted in any form or by any means,

electronic or mechanical, for any purpose, nor transferred to any other media or language

without the written permission of Cognex Corporation.

Copyright © 2011 Cognex Corporation. All Rights Reserved.

Portions of the hardware and software provided by Cognex may be covered by one or more

of the U.S. and foreign patents listed below as well as pending U.S. and foreign patents.

Such pending U.S. and foreign patents issued after the date of this document are listed on

Cognex web site at http://www.cognex.com/patents.

VisionPro

5481712, 5495537, 5548326, 5583954, 5602937, 5640200, 5751853, 5768443, 5825913, 5850466, 5872870, 5901241, 5943441, 5978080, 5978521,
5987172, 6005978, 6039254, 6064388, 6075881, 6137893, 6141033, 6167150, 6215915, 6240208, 6324299, 6381366, 6381375, 6411734, 6421458,
6459820, 6490375, 6516092, 6563324, 6658145, 6687402, 6690842, 6697535, 6718074, 6748110, 6771808, 6804416, 6836567, 6850646, 6856698,
6920241, 6959112, 6963338, 6973207, 6975764, 6985625, 6993177, 6993192, 7006712, 7016539, 7043081, 7058225, 7065262, 7088862, 7164796,
7190834, 7242801, 7251366, 7313761, EP0713593, JP3522280, JP3927239

DataMan

5742037, 5943441, 6215915, 6236769, 6282328, 6381375, 6408109, 6457032, 6690842, 6941026, 7175090, 7181066, 7412106, 7427028, 7549582,
7604174, 7614563, 7617984, US-2005-0087601-A1, US-2006-0131418-A1, US-2006-0131419-A1, US-2006-0133757-A1, US-2007-0090193-A1, US-2007-
0091332-A1, US-2007-0152064-A1, US-2007-0170259-A1, US-2008-0004822-A1, US-2008-0011855-A1, US-2008-0142604-A1, US-2008-0143838-A1, US-
2008-0158365-A1, US-2009-0090781-A1, US-2009-0108073, US-2009-0121027-A1, US-2009-0166424-A1, US-2009-0294541-A1, WO06065619A1,
EP1687752

CVL

5495537, 5548326, 5583954, 5602937, 5640200, 5717785, 5751853, 5768443, 5825483, 5825913, 5850466, 5859923, 5872870, 5901241, 5943441,
5949905, 5978080, 5987172, 5995648, 6002793, 6005978, 6064388, 6067379, 6075881, 6137893, 6141033, 6157732, 6167150, 6215915, 6240208,
6240218, 6324299, 6381366, 6381375, 6408109, 6411734, 6421458, 6457032, 6459820, 6490375, 6516092, 6563324, 6658145, 6687402, 6690842,
6718074, 6748110, 6751361, 6771808, 6798925, 6804416, 6836567, 6850646, 6856698, 6920241, 6959112, 6975764, 6985625, 6993177, 6993192,
7006712, 7016539, 7043081, 7058225, 7065262, 7088862, 7164796, 7190834, 7242801, 7251366, EP0713593, JP3522280, JP3927239

VGR

5495537, 5602937, 5640200, 5768443, 5825483, 5850466, 5859923, 5949905, 5978080, 5995648, 6002793, 6005978, 6075881, 6137893, 6141033,
6157732, 6167150, 6215915, 6324299, 6381375, 6408109, 6411734, 6421458, 6457032, 6459820, 6490375, 6516092, 6563324, 6658145, 6690842,
6748110, 6751361, 6771808, 6804416, 6836567, 6850646, 6856698, 6959112, 6975764, 6985625, 6993192, 7006712, 7016539, 7043081, 7058225,
7065262, 7088862, 7164796, 7190834, 7242801, 7251366

OMNIVIEW

6215915, 6381375, 6408109, 6421458, 6457032, 6459820, 6594623, 6804416, 6959112, 7383536

CVL Vision Library

5495537, 5548326, 5583954, 5602937, 5640200, 5717785, 5751853, 5768443, 5825483, 5825913, 5850466, 5859923, 5872870, 5901241, 5943441,
5949905, 5978080, 5987172, 5995648, 6002793, 6005978, 6064388, 6067379, 6075881, 6137893, 6141033, 6157732, 6167150, 6215915, 6240208,
6240218, 6324299, 6381366, 6381375, 6408109, 6411734, 6421458, 6457032, 6459820, 6490375, 6516092, 6563324, 6658145, 6687402, 6690842,
6718074, 6748110, 6751361, 6771808, 6798925, 6804416, 6836567, 6850646, 6856698, 6920241, 6959112, 6975764, 6985625, 6993177, 6993192,
7006712, 7016539, 7043081, 7058225, 7065262, 7088862, 7164796, 7190834, 7242801, 7251366, EP0713593, JP3522280, JP3927239

SMD 4

5995648, 5850466, 6751361, 6690842, 6563324, 6490375, 5949905, 5978080, 6137893, 6167150, 6075881, 6748110, 5859923, 6411734, 6324299,
6516092, 7190834, 6658145, 6836567, 6850646, 6975764, 6985625, 6993192, 7006712, 7043081, 7058225, 7065262, 7088862, 7164796, 7251366,
6856698, 6002793, 6005978, 6771808, 6804416, 7016539, 6959112, 5602937, 7242801, 5640200, 5495537, 5768443, 5825483, 6421458, 6459820,

http://www.cognex.com/patents

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 3

Legal Notices

6215915, 6381375, 6457032, 6157732, 6408109, 6141033, 6026176, 6442291, 6151406, 6396942, 6614926, 5371690, 5845007, 5943441, 6963338,
5805722, 5909504, 5933523, 5964844, 5974169, 5987172, 6078700, 6252986, 6278796, 6307210, 6408429, 6424734, 6526165, 6571006, 6639624,
6681039, 6748104, 6813377, 6853751, 6898333, 6950548, 6993177, 7139421, 5757956

BGA II and BGA III

5495537, 5602937, 5640200, 5768443, 5801966, 5825483, 5850466, 5859923, 5949905, 5978080, 5995648, 6002793, 6005978, 6026176, 6055328,
6075881, 6115042, 6118893, 6130959, 6137893, 6141009, 6141033, 6151406, 6157732, 6167150, 6215915, 6289117, 6324299, 6353676, 6381375,
6396942, 6408109, 6411734, 6421458, 6442291, 6457032, 6459820, 6490375, 6516092, 6563324, 6577775, 6614926, 6658145, 6690842, 6748110,
6751361, 6771808, 6804416, 6836567, 6850646, 6856698, 6959112, 6975764, 6985625, 6993192, 7006712, 7016539, 7043081, 7058225, 7065262,
7088862, 7164796, 7190834, 7242801, 7251366

Wire Bonder

5495537, 5532739, 5581632, 5602937, 5640199, 5640200, 5642158, 5676302, 5754679, 5757956, 5768443, 5825483, 5835622, 5850466, 5859923,
5861909, 5949905, 5978080, 5991436, 5995648, 6002793, 6005978, 6035066, 6061467, 6075881, 6137893, 6141033, 6157732, 6167150, 6215915,
6289492, 6324299, 6381375, 6408109, 6411734, 6421458, 6457032, 6459820, 6490375, 6516092, 6563324, 6658145, 6690842, 6748110, 6751361,
6771808, 6804416, 6836567, 6850646, 6856698, 6959112, 6975764, 6985625, 6993192, 7006712, 7016539, 7043081, 7058225, 7065262, 7088862,
7164796, 7171036, 7190834, 7242801, 7251366

The following are registered trademarks of Cognex Corporation:

acuReader® BGAII® Check it with Checker® Checker® Cognex Vision for Industry CVC-1000® CVL® DataMan® DisplayInspect® DVT® EasyBuilder®
IDMax® In-SightIn-Sight 2000® In-Sight® (insignia with cross-hairs) MVS-8000® OmniView® PatFind® PatFlex® PatInspect® PatMax® PatQuick®
SensorView® SmartLearn® SmartView® SMD4® UltraLight® Vision Solutions® VisionPro® VisionView®

The following are trademarks of Cognex Corporation:

3D-Locate™ 3DMax™ CheckPoint™ Cognex VSoC™ FFD™ iLearn™ InspectEdge™ Legend™ LineMax™ NotchMax™ ProofRead™ SmartAdvisor™
SmartSync™ SmartSystem™

Other product and company names mentioned herein are the trademarks, or registered

trademarks, of their respective owners.

LASER LIGHT

DO NOT STARE INTO BEAM

CLASS 2 LASER PRODUCT 650 nm < 1 mW

CLASSIFIED PER IEC 60825-1, Ed 2. 2007-08

AS/NZS. 2211.1:2004

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 4

Contents

About this Manual .. 9

Networking .. 10

Connecting your DataMan to the Network .. 10

Connecting your DataMan Reader to the Network ... 10

Connecting your DataMan Base Station to the Network ... 10

Direct Connection to Your Computer ... 11

Configuring the DataMan to Reside on the Same Subnet as the PC 11

Configuring the PC to Reside on the Same Subnet as the DataMan 13

Connecting Your Reader across Subnets .. 16

Troubleshooting an Ethernet Connection .. 17

Industrial Network Protocols ... 19

EtherNet/IP ... 20

DMCC ... 20

Reader Configuration Code .. 20

Setup Tool ... 20

Getting Started .. 21

Object Model .. 24

Attributes .. 25

SoftEvents .. 27

General Fault Indicator ... 27

Services .. 27

Acquire Service .. 28

SendDMCC Service ... 28

GetDecodeResults Service ... 29

GetDecodeResults Request Data Format ... 29

Acquisition Sequence .. 29

Decode / Result Sequence ... 30

Behavior of DecodeStatusRegister .. 30

Results Buffering .. 31

Assembly Object .. 32

Input Assembly .. 32

Output Assembly ... 33

PCCC Object .. 33

Rockwell ControlLogix Examples ... 36

Implicit Messaging ... 36

Establishing an Implicit Messaging Connection ... 36

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 5

Contents

Accessing Implicit Messaging Connection Data ... 42

Verifying Implicit Messaging Connection Operation ... 45

Explicit Messaging .. 47

Issuing DMCC Commands ... 47

Rockwell CompactLogix Examples ... 51

Rockwell SLC 5/05 Examples ... 52

Setting up the PLC for Ethernet Communication ... 52

Message Instruction (MSG) ... 53

Sending DMCC Commands from an SLC 5/05 .. 55

Message Instruction Results .. 58

Using the Generic EtherNet/IP Profile.. 58

Establishing a Generic Implicit Messaging Connection ... 58

Accessing Generic Implicit Messaging Connection Data ... 61

Examples.. 61

MC Protocol .. 63

DMCC ... 63

Reader Configuration Code .. 63

Setup Tool ... 63

MC Protocol Scanner ... 64

Getting Started .. 64

Network Configuration .. 65

Data Block Configuration ... 66

Interface ... 67

Control Block ... 67

Control Block Field Descriptions ... 68

Status Block .. 69

Status Block Field Descriptions .. 69

Input Data Block .. 70

Input Data Block Field Descriptions .. 70

Output Data Block .. 71

Output Data Block Field Descriptions .. 71

String Command Block ... 71

String Command Block Field Descriptions .. 72

String Command Result Block .. 72

String Command Result Block Field Descriptions .. 72

Operation .. 72

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 6

Contents

Scanning ... 72

Handshaking ... 73

Acquisition Sequence .. 74

Decode / Result Sequence ... 75

Results Buffering .. 75

SoftEvents .. 76

String Commands .. 76

General Fault Indicator ... 77

Examples .. 77

Function.. 77

Triggering a Read .. 78

Getting Read Results .. 78

Execute String Commands (DMCC) .. 79

Execute Soft Events ... 79

Modbus TCP ... 81

DMCC ... 81

Reader Configuration Code .. 81

Setup Tool ... 81

Modbus TCP Handler ... 82

Getting Started .. 82

Network Configuration .. 83

Data Block Configuration ... 83

Interface ... 84

Control Block ... 84

Control Block Field Descriptions ... 85

Status Block .. 86

Status Block Field Descriptions .. 86

Input Data Block .. 87

Input Data Block Field Descriptions .. 88

Output Data Block .. 88

Output Data Block Field Descriptions .. 88

String Command Block ... 88

String Command Block Field Descriptions .. 89

String Command Result Block .. 89

String Command Result Block Field Descriptions .. 89

Operation .. 89

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 7

Contents

Requests ... 89

Typical Sequence Diagram .. 90

Handshaking ... 90

Acquisition Sequence .. 90

Decode / Result Sequence ... 91

Results Buffering .. 92

SoftEvents .. 92

String Commands .. 93

General Fault Indicator ... 93

Examples .. 94

ApplicationLayer Example ... 94

Function.. 94

Transferring “Control” Register Data .. 94

Transferring Status Register Data .. 95

Transferring Output Data .. 95

DataManControl Example .. 95

Function.. 95

Triggering a Read .. 95

Getting Read Results .. 96

Execute String Commands (DMCC) .. 96

Execute Soft Events ... 96

PROFINET .. 97

DMCC ... 97

Reader Configuration Code .. 97

Setup Tool ... 98

Getting Started .. 98

Modules ... 103

Acquisition Control Module ... 104

Acquisition Status Module .. 105

Results Control Module .. 105

Results Status Module ... 106

Soft Event Control Module ... 106

User Data Module ... 107

Result Data Module ... 108

Operation ... 109

SoftEvents ... 109

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 8

Contents

General Fault Indicator .. 109

Acquisition Sequence ... 110

Decode / Result Sequence .. 111

Behavior of DecodeStatusRegister ... 111

Results Buffering ... 112

Siemens Examples ... 112

Symbol Table ... 112

Trigger and Get Results ... 114

Using Soft Events .. 118

Executing DMCC Commands ... 120

DataMan Application Development .. 122

DMCC Overview .. 122

Command Syntax .. 122

Command Header Syntax ... 122

Header Examples .. 122

Command .. 122

Commands .. 123

Parameters .. 123

Arguments ... 123

Footer ... 123

Reader Response .. 123

Examples ... 124

DMCC Application Development ... 124

DMCC .NET Contents ... 124

Building the DMCC .NET Sample Code ... 124

Using DMCC .NET .. 124

Enumerating DataMan Devices ... 125

Connecting to a DataMan Device .. 125

DataMan Device Settings ... 126

Displaying Static and Live Images from a DataMan Device 126

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 9

About this Manual

About this Manual
The DataMan Communications and Programming Guide provides information about how to

integrate a DataMan device into your particular environment, including:

 Network configuration

 Industrial network protocols

 Integration with PLCs

 DataMan Control Commands (DMCC) API

Accordingly, the DataMan connected to a network can be triggered to acquire images by

several methods. It can be done by the Setup Tool, it can be triggered by trigger bits or

manipulating objects (industrial protocols), by external hard wired input or through DMCC

command. This document provides a detailed description on how to do each.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 10

Networking

Networking
You can connect your DataMan via a simple Ethernet connection. You can either set the IP

address and subnet mask of your DataMan manually or let them be configured

automatically using DHCP.

Connecting your DataMan to the Network

Connecting your DataMan Reader to the Network

Supply power to the reader using a Power over Ethernet (PoE) injector. Cognex

recommends the following connection sequence:

1. Connect the PoE injector to the Ethernet network (both ends of the patch cable).

2. Connect the power cord (AC 230V/110V) to the PoE injector.

3. Connect the reader to the PoE injector.

To disconnect the reader:

4. Disconnect the reader from the PoE injector.

5. Disconnect the power cord from the PoE injector.

6. Disconnect the PoE injector from the Ethernet network.

Connecting your DataMan Base Station to the Network

1. Power up your base station using one of these two options:

 If you want to connect the Ethernet cable directly to the network or your PC, power up

the base station using a 24V power supply.

 If you want to use a Power Over Ethernet adapter, that will power up your base

station.

2. Connect your base station to your PC with an Ethernet cable.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 11

Networking

Ethernet connection

3. The base station becomes visible as connected through Ethernet, and it routes data

through the wireless interface to the reader.

Direct Connection to Your Computer
When connecting a DataMan directly to an Ethernet port on a PC, both the PC and the

DataMan must be configured for the same subnet. This can be done automatically though

Link Local Addressing or you can manually configure your reader and your PC.

Link Local Addressing automatically requests and assigns an IP address. In the Setup Tool,

this corresponds to the DHCP Server communication option. This is the default, you do not

have to make any changes.

You can also manually configure your DataMan to reside on the same subnet as the PC or

the other way round: configure your PC to reside on the same subnet as your DataMan.

These options are detailed in the following sections.

Configuring the DataMan to Reside on the Same Subnet as the PC

Perform the following steps to configure your DataMan device:

1. Use the ipconfig utility to determine the IP Address and subnet mask of your PC. In

the Start menu, click Run…

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 12

Networking

2. In the Open field, type “cmd” and click OK.

3. In the command prompt window, type “ipconfig” and press Enter. A listing of all
network adaptors on the PC is shown.

4. Record your PC‟s IP Address and Subnet Mask. In this example,

 IP Address is 169.254.135.189

 Subnet Mask is 255.255.0.0.

5. Go to the Setup Tool‟s Connect to Reader pane, and use the Force Network

Settings dialog to manually configure the network settings on the target DataMan.

6. Click the Force Network Settings button. The Force Network Settings dialog
opens.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 13

Networking

7. To force the network settings on your DataMan:

a. Enter the MAC address of the DataMan in the MAC Address field. The MAC Address

of the DataMan can be found on the label of the reader or the base station.

b. Select Use Static IP Address.

c. Enter an IP Address and Subnet Mask that will be on the same subnet as the PC.

Make sure this IP address is not yet in use (for example, test by pinging it).

 Example IP Address: 169.254.135.200

 Subnet Mask: 255.255.0.0

NOTE

The default Subnet Mask is 255.255.255.0. You can set it back to default by scanning the

Reset Scanner to Factory Defaults Configuration Code.

Authentication should be left blank unless Authentication has been enabled on the

DataMan. Authentication is disabled by default.

Click OK. Your DataMan is configured to the network settings specified, and it
reboots automatically.

Your DataMan appears under the Network devices node after the address has
been resolved. This can take up to 60 seconds.

8. If the device does not appear after 1 or 2 minutes, push the Refresh button on the
Setup Tool‟s Connect to Reader pane. This will force the Setup Tool to scan for
DataMan devices connected to the PC or connected to the same network.

Configuring the PC to Reside on the Same Subnet as the DataMan

If it is preferred that the DataMan network settings remain unchanged, you must already

know the IP Address and Subnet Mask of the DataMan or you must connect to the DataMan

via RS-232 to find them out. The DataMan IP Address and Subnet Mask can be found under

Communication Settings.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 14

Networking

You can check (and configure) the Static IP Address of both the wireless reader and the

base station under Communication Settings when you connect to the base station in the

Setup Tool.

Once the IP Address and Subnet Mask of the DataMan are known, the PC‟s network
settings can be changed.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 15

Networking

Perform the following steps to configure your PC (examples here are of Windows XP):

9. In the Start Menu, right click My Network Places, click the Properties menu option to

launch Network Connections.

10. Right click on the network adaptor connected to the DataMan and select the

Properties menu option.

11. Under the General tab, scroll down and select Internet Protocol (TCP/IP), and

click Properties.

12. Under the General tab, select the Use the following IP address radio option and

enter an IP Address and Subnet Mask that are on the same subnet as your DataMan.
Click OK.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 16

Networking

13. Click Close. The network settings of your PC will change to the new specified

values.

14. Reboot the DataMan. It appears under the Network devices node on the Connect
to Reader pane after the network address has been resolved.

15. If the device does not appear after 1 or 2 minutes, click the Refresh button on the

Setup Tool‟s Connect to Reader pane. The Setup Tool scans for DataMan devices

connected to the PC or connected to the same network.

Connecting Your Reader across Subnets
The following options can be used to connect to the DataMan with the Setup Tool across
subnets if you already know the IP Address of the DataMan.

1. In the Setup Tool‟s Connect to Reader pane, click Add Device.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 17

Networking

2. Enter a name and the actual IP Address of the target DataMan. The name has no
effect upon the DataMan. It is only used as an identifier to list the target DataMan
under the Network devices node.

3. Click OK. The name appears under the Network devices node. Double click the
new node or highlight it and click the Connect button. If the device is available,
you will be connected (a DataMan 200 is connected in this example).

Troubleshooting an Ethernet Connection
Based on your network configuration, the Setup Tool may not be able to communicate with

the DataMan device and it will not appear in the list of Network devices.

First check your Ethernet connection with the reader and click Refresh in the Setup Tool.

If you are using a tethered device (not a base station or a wireless reader), scan the

Enable DHCP code in the DataMan Configuration Codes document available from the Start

menu. This might allow the reader to acquire a suitable IP address from a DHCP server on

your subnet.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 18

Networking

If the device still does not appear, you can use either the Add Device or Force Network

Settings options in the Setup Tool.

If you know the IP address of the device, use the Add Device option. If you do not know

the IP address, use the Force Network Settings options. Either method should allow your

DataMan to appear in the list of Network devices so that you can connect to it through

the Setup Tool and your Ethernet connection.

You can also use the RS-232 connection to configure the device with parameters that allow

it to communicate over your Ethernet network.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 19

Industrial Network Protocols

Industrial Network Protocols
DataMan uses industrial network protocols that are based on standard Ethernet protocols.

These protocols: EtherNet/IP, PROFINET, MC Protocol and Modbus/TCP are enhanced to

provide more reliability than standard Ethernet.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 20

EtherNet/IP

EtherNet/IP
DataMan supports EtherNet/IP™, an application level protocol based on the Common

Industrial Protocol (CIP). EtherNet/IP provides an extensive range of messaging options

and services for the transfer of data and I/O over Ethernet. All devices on an EtherNet/IP

network present their data to the network as a series of data values called attributes.

Attributes can be grouped with other related data values into sets, these are called

Assemblies.

By default the DataMan has the EtherNet/IP protocol disabled. The protocol can be enabled

via DMCC, scanning a reader programming code, or in the Setup Tool.

DMCC
The following commands can be used to enable/disable EtherNet/IP on the DataMan. The

commands may be issued via RS-232 or Telnet connection.

NOTE

Because you have to make changes to the Telnet client provided by Windows to

communicate with DataMan, it is recommended you use third party clients such as PuTTY.

Enable:

||>SET ETHERNET-IP.ENABLED ON

||>CONFIG.SAVE

||>REBOOT

Disable:

||>SET ETHERNET-IP.ENABLED OFF

||>CONFIG.SAVE

||>REBOOT

Reader Configuration Code
Scanning the following reader configuration codes will enable/disable EtherNet/IP.

NOTE

You must reboot the device for the change to take effect.

Enable: Disable: Reboot:

Setup Tool
EtherNet/IP can be enabled by checking Enabled on the Industrial Protocols pane‟s

EtherNet/IP tab. Make sure you save the new selection by clicking Yes to the Reboot

Required message window.

NOTE

The new settings take effect only after the reader is rebooted.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 21

EtherNet/IP

Getting Started
Preparing to use EtherNet/IP involves the following main steps:

 Make sure you have the Rockwell Software tool on your machine.

 Set up the Rockwell Software tool so that it recognizes your DataMan device.

 Install the DataMan Electronic Data Sheet (EDS) for the DataMan reader.

Perform the following steps to set up EtherNet/IP:

1. Verify that the Rockwell Software is on your PC.

2. Make sure you select the Add on Profile installation and the Samples installation. Add

on Profile is only used with Rockwell ControlLogix or CompactLogix PLCs.

3. Install the Rockwell Add on Profiles by navigating to the following directory.

NOTE

Adjust the path for the specific Setup Tool version that you are using.

4. Select the Rockwell AOP directory:

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 22

EtherNet/IP

5. If you have not previously installed the Rockwell AOP, now run MPSetup.exe.

6. From the Start menu, go to Programs Rockwell Software RSLinx Tools EDS

Hardware Install Tool.

7. Run the ESD Install tool.

NOTE

If you have an existing EDS file, uninstall it first, then install the latest version of the EDS.

8. Run the Setup Tool and update the DataMan firmware.

9. Check if the firmware has been loaded into the unit by clicking in the Setup Tool View

 System Info.

In the Setup Tool, go to the Industrial Protocols pane and check the Enabled

checkbox on the EtherNet/IP™ tab.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 23

EtherNet/IP

10. In order for the changes to take effect, you must save your settings and cycle power.

In the Setup Tool menu, click System Save Settings.

11. Reboot your reader.

12. Your DataMan is visible now in the RSWHO.

If your DataMan is visible, but the icon is a question mark, repeat the EDS Installation.

13. Open one of the sample jobs and integrate your DataMan into your program using the

Add on Profile.

14. Alternatively, you can add the DataMan as a Module on your network.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 24

EtherNet/IP

Object Model
The ID Reader Object is a vendor specific object class. This means it is not part of the CIP

common (public) architecture but rather an extension. It is a custom object that Cognex

has added to the EtherNet/IP architecture on the DataMan device. This object models all

data and functionality available in the DataMan reader. This includes triggering, status,

events, errors and result data.

The ID Reader Object is identified by its vender specific class code:

DataMan ID Reader Object Class Code: 0x79

Objects are made up of attributes (data) and services (functionality). These can be defined

at the class level (common to all instances of the class) or the instance level (unique to an

individual instance). There are common attributes and services defined by the CIP

specification that apply to all objects (often these are optional). Vendors may also define

their own attributes and services for their vendor specific classes.

The ID Reader Object attributes and services can be individually accessed via explicit

messaging. Also a number of the ID Reader Object attributes are exposed in the DataMan

assembly objects which allow them to be accessed as a group via implicit messaging.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 25

EtherNet/IP

Attributes

The DataMan ID Reader Object (Class Code: 0x79) has the following attributes.

Attribute

ID

Access

Rule
Name

Data

Type
Description

0x9 Set AcqTriggerEnable BOOL

0 = EtherNet/IP triggering is

disabled

1 = EtherNet/IP triggering is

enabled

0xA Set AcqTrigger BOOL
Acquire an image when this

attribute changes from 0 to 1.

0xB Get AcqStatusRegister BYTE

Bit0: Trigger Ready

Bit1: Trigger Ack

Bit2: Acquiring

Bit3: Missed Acquisition

Bit4-7: Reserved

0xC Set UserData
ARRAY of

BYTE

User defined data that may be

used as an input to the

acquisition/decode.

0xD Set BufferResultsEnable BOOL
When true, it enables buffering of

the decode results.

0xE Get DecodeStatusRegister BYTE

Bit0: Decoding

Bit1: Decode completed (toggle)

Bit2: Results buffer overrun

Bit3: Results available

Bit4: Reserved

Bit5: Reserved

Bit6: Reserved

Bit7: General fault indicator

0xF Set DecodeResultsAck BOOL
Acknowledges that the client

received the decode results.

DataMan Reader System

Reader

Object

Assembly Object

Instance 11

Inputs

Instance 21

Outputs

Ethernet

Link Object

Identity

Object

TCP/IP

Object

Other

Internal

Objects

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 26

EtherNet/IP

Attribute

ID

Access

Rule
Name

Data

Type
Description

0x10 Get

DecodeResults
STRUCT

of
The last decode results

ResultsID UINT

Decode results identifier.

Corresponds to the TriggerID of

the decoded image.

ResultCode UINT

Decode result summary code

value

Bit0: 1=Read, 0=No read

Bit1: 1=Validated, 0=Not

Validated

Bit2: 1=Verified, 0=Not Verified

Bit3: 1=Acquisition trigger

overrun

Bit4: 1=Acquisition buffer

overrun

Bit5-15: Reserved (future use)

ResultExtended UINT Extended result information

ResultLength UINT
Current number of result data

bytes.

ResultData
ARRAY of

BYTE
Result data from last decode

0x12 Set SoftEvents BYTE

SoftEvents act as virtual inputs

(execute action on 0 to 1

transition)

Bit0: Train code

Bit1: Train match string

Bit2: Train focus

Bit3: Train brightness

Bit4: Un-Train

Bit5: Reserved (future use)

Bit6: Execute DMCC command

Bit7: Set match string

0x15 Get TriggerID UINT
Trigger identifier. ID of the next

trigger to be issued.

0x16 Set UserDataOption UINT Optional user data information

0x17 Set UserDataLength UINT
Current number of user data

bytes.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 27

EtherNet/IP

Attribute

ID

Access

Rule
Name

Data

Type
Description

0x18 Get SoftEventAck BYTE

Acknowledgment of SoftEvents.

Bit0: Train code ack

Bit1: Train match string ack

Bit2: Train focus ack

Bit3: Train brightness ack

Bit4: Un-Train ack

Bit5: Reserved (future use)

Bit6: Execute DMCC command

ack

Bit7: Set match string ack

SoftEvents

SoftEvents act as “virtual” inputs. When the value of a SoftEvent changes from 0 1 the

action associated with the event will be executed. When the action completes the

corresponding SoftEventAck bit will change from 1 0 to signal completion.

The SoftEvent and SoftEventAck form a logical handshake. After SoftEventAck changes to 1

the original SoftEvent should be set back to 0. When that occurs SoftEventAck will

automatically be set back to 0.

The “ExecuteDMCC” and “SetMatchString” soft event actions require user supplied data.

This data must be written to the UserData & UserDataLength area of the Input Assembly

prior to invoking the soft event. Since both of these soft events depend on the UserData,

only one may be invoked at a time.

General Fault Indicator

When a communication related fault occurs the “GeneralFault” bit will change from 0 1.

Currently the only fault conditions supported are soft event operations. If a soft event

operation fails, the fault bit will be set. The fault bit will remain set until the next successful

soft event operation. Or, until TriggerEnable is set to 0 and then back to 1.

Services

The ID Reader Object supports the following Common CIP services.

SoftEvent

cycle #1

SoftEvent cycle #2

(failure occured)

SoftEvent

cycle #3

SoftEvent

SoftEventAck

GeneralFault

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 28

EtherNet/IP

Service Code Service Name Description

0x05 Reset Resets the ID Reader object

0x0E Get_Attribute_Single
Returns the contents of the specified

attribute.

0x10 Set_Attribute_Single Modifies the specified attribute

The ID Reader Object supports the following vendor specific services.

Service Code Service Name Description

0x32 Acquire Triggers a single acquisition

0x34 SendDMCC Sends a DMCC command to the device

0x35 GetDecodeResults Gets the content of the DecodeResults

attribute

Acquire Service

The Acquire Service will cause an acquisition to be triggered (if the acquisition system is

ready to acquire an image). If the acquisition could not be triggered, then the Missed

Acquisition bit of the AcqStatusRegister will be set until the next successful acquisition.

SendDMCC Service

The SendDMCC Service sends a DMCC command string to the device. The request data

consists of the DMCC command string that is to be sent to the reader. The reply data will

contain the string result of the DMCC command. Additionally the service provides a numeric

result status for the call. Most of these result codes relate to the basic success/failure of

the service execution. However, the service also maps the actual DMCC status codes. This

allows the PLC to interpret the service request without having to parse the actual DMCC

return string.

Service Return Code Description DMCC Return Code

0 Success – No error 0

1 Bad Command -

4 No Answer – System too busy -

100 Unidentified error 100

101 Command invalid 101

102 Parameter invalid 102

103 Checksum incorrect 103

104
Parameter rejected/altered due to reader

state
104

105
Assigned wireless reader is not available

for the base station
105

NOTE

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 29

EtherNet/IP

The string must be in the CIP STRING2 format (16-bit integer indicating the string length in

characters followed by the actual string characters, no terminating null required).

GetDecodeResults Service

The GetDecodeResults service reads data from the DecodeResults attribute of the ID

Reader Object. This service takes parameters indicating the “size” (number of bytes to

read) and the “offset” (offset into the DecodeResults attribute to begin reading). This gives

the service the flexibility to be used with PLC‟s that have different restrictions on the

amount of data allowed in an explicit message. It also allows the user to access very large

codes that cannot be completely transferred with implicit messaging (assembly object).

GetDecodeResults Request Data Format

Name Type Description

Size UINT The number of bytes of the DecodeResults attribute to read

Offset UINT

The offset into the DecodeResults attribute. This specifies the first

byte of the DecodeResults attribute to begin reading (0 based

offset).

Acquisition Sequence

DataMan can be triggered to acquire images by several methods. It can be done implicitly

via the Assembly object. Or done explicitly via the ID Reader object. When using explicit

messaging it can be done in a single step by accessing the Acquire Service, it can also be

done by directly manipulating the ID Reader object attributes (AcqTrigger and

AcqStatusRegister) and finally it can be done via DMCC command. The ID Reader attributes

will be discussed here but these same values can be accessed via the assembly objects.

On startup the AcqTriggerEnable attribute will be False. It must be set to True to enable

triggering. When the device is ready to accept triggers, the Trigger Ready bit in the

AcqStatusRegister will be set to True.

While the AcqStatusRegister “Trigger Ready” bit is True, each time the ID Reader object

sees the AcqTrigger attribute change from 0 to 1, it will initiate an image acquisition. When

setting this via the assembly objects, the attribute should be held in the new state until

that same state value is seen in the Trigger Ack bit of the AcqStatusRegister (this is a

necessary handshake to guarantee that the change is seen by the ID Reader object).

During an acquisition, the Trigger Ready bit in the AcqStatusRegister will be cleared and

the Acquiring bit will be set to True. When the acquisition is completed, the Acquiring bit

will be cleared. The Trigger Ready bit will again be set True once the device is ready to

begin a new image acquisition.

If results buffering is enabled, the device will allow overlapped acquisition and decoding

operations. Trigger Ready will be set high after acquisition is complete but while decoding

is still in process. This can be used to achieve faster overall trigger rates. If result buffering

is not enabled, the Trigger Ready bit will remain low until both the acquisition and decode

operations have completed.

As a special case, an acquisition can be cancelled by clearing the Trigger signal before the

read operation has completed. This allows for the cancellation of reads in Presentation and

Manual mode if no code is in the field of view. To ensure that a read is not unintentionally

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 30

EtherNet/IP

cancelled, it is advised that the PLC hold the Trigger signal True until both TriggerAck and

ResultsAvailable are True (or DecodeComplete toggles state).

To force a reset of the trigger mechanism set the AcqTriggerEnable attribute to False, until

the AcqStatusRegister is 0. Then, AcqTriggerEnable can be set to True to re-enable

acquisition.

Decode / Result Sequence

After an image is acquired it is decoded. While being decoded, the Decoding bit of the

DecodeStatusRegister is set. When the decode is complete, the Decoding bit is cleared and

the Decode Completed bit is toggled.

The BufferResultsEnable attribute determines how decode results are handled by the ID

Reader Object. If the BufferResultsEnable attribute is set to False, then the decode results

are immediately placed into the DecodeResults attribute and Results Available is set to

True.

If the BufferResultsEnable attribute is set to True the new results are queued. The earlier

decode results remain in the DecodeResults attribute until they are acknowledged by the

client setting the DecodeResultsAck attribute to True. After the Results Available bit is

cleared, the client should set the DecodeResultsAck attribute back to False to allow the

next queued results to be placed in to the DecodeResults attribute. This is a necessary

handshake to ensure the results are received by the DataMan reader‟s client (PLC).

Behavior of DecodeStatusRegister

Bit Bit Name Results if Buffering Disabled Results if Buffering Enabled

1 Decoding
Set when decoding an

image.
Set when decoding an image.

2 Decode Complete
Toggled on completion of an

image decode.

Toggled on completion of an

image decode.

1

Trigger EN

Trigger Ready

Trigger

Trigger Ack

Acquiring

Missed Acq

2

1

1

1

2

2

2

M

M

M

3

3

3

3

Acquisition #1 Acquisition #2 Acquisition #3 Missed Acq

 Client

 DataMan

1

1

1

1

2

 2

 2

 2

M

 M

M

3

3

3

3

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 31

EtherNet/IP

Bit Bit Name Results if Buffering Disabled Results if Buffering Enabled

3
Results Buffer

Overflow
Remains set to zero.

Set when decode results

could not be queued because

the client failed to

acknowledge a previous

result. Cleared when the

decode result is successfully

queued.

4 Results Available

Set when new results are

placed in the DecodeResults

attribute. Stays set until the

results are acknowledged by

setting DecodeResultsAck to

true.

Set when new results are

placed in the DecodeResults

attribute. Stays set until the

results are acknowledged by

setting DecodeResultsAck to

true.

Results Buffering

There is an option to enable a queue for decode results. If enabled this allows a finite

number of decode result data to queue up until the client (PLC) has time to read them. This

is useful to smooth out data flow if the client (PLC) slows down for short periods of time.

Also, if result buffering is enabled the device will allow overlapped acquisition and decode

operations. Depending on the application this can be used to achieve faster over all trigger

rates. See Acquisition Sequence description above for further detail.

In general, if reads are occurring faster than results can be sent out the primary difference

between buffering or not buffering is determining which results get discarded. If buffering

1

Decoding

Trigger

Ready

Trigger

Trigger

Ack

Acquiring

Decode

Cmplt

2

1

1

1

2

2

1

Read #1
Read #2

1 2

2

2 Results

Avail

Results

Ack
1

1

h

t

t

p

:

/

/

w

w

w

.

f

a

c

e

b

o

o

k

.

c

o

m

/

a

l

b

u

Client

DataMan

1 2

1

1

1

1

1

1

1

 2

 2

 2

 2

 2

 2

 2

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 32

EtherNet/IP

is not enabled the most recent results are kept and the earlier result (which was not read

by the PLC fast enough) is lost. Essentially the more recent result will simply over write the

earlier result. If buffering is enabled (and the queue becomes full) the most recent results

are discarded until room becomes available in the results queue.

Assembly Object

Assemblies are combinations of selected attributes (data items) from CIP objects with in a

device. The device vendor defines assemblies according to their needs. They combine data

together in useful groupings according to the requirements of the application.

The designation of Input & Output assembly can be confusing. DataMan is an I/O adapter

class device. The convention for adapters is that Input Assemblies produce (transmit) data

for another device (i.e. DataMan PLC) and Output Assemblies consume (receive) data

from another device (i.e. PLC DataMan). Essentially DataMan acts as an I/O module for

another device such as a PLC.

Assembly objects use implicit messaging. In the abstract they are just blocks of data which

are transmitted as the raw payload of implicit messaging packets. These implicit messaging

packets are produced (transmitted) repeatedly at a predefined chosen rate (100ms,

200ms, etc).

DataMan readers have a single input assembly and single output assembly. These

assemblies combine selected attributes (data) of the DataMan ID Reader Object into

groupings that minimize network bandwidth and still allow for efficient control and

processing. The data in these assemblies can also be accessed individually from the ID

Reader Object. However, using the assembly objects is much more efficient. This is the

reason that they are the primary means of runtime communication between a DataMan

reader and a PLC.

Input Assembly

The Input assembly provides status information, process state, and decode results.

Instance Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

11
0 Reserved

Missed

Acq
Acquiring

Trigger

Ack

Trigger

Ready

1
General

Fault
Reserved

Results

Available

Results

Buffer

Overrun

Decode

Complete

Toggle

Decoding

2

Soft

Event

Ack 7

Soft

Event

Ack 6

Soft

Event

Ack 5

Soft

Event

Ack 4

Soft

Event

Ack 3

Soft

Event

Ack 2

Soft

Event

Ack 1

Soft

Event

Ack 0

3 - 5 Reserved

6

Trigger ID (16-bit integer)

7

8

Result ID (16-bit integer)

9

10 Result Code (16-bit integer)

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 33

EtherNet/IP

Instance Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

11

12

Result Extended (16-bit integer)

13

14

Result Data Length (16-bit integer)

15

16 Result Data 0

…

499 Result Data 483

Output Assembly

The Output assembly contains control signals, software event signals, and any user data

required for the trigger & decode.

Instance Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

21

0 Reserved
Results

Ack

Buffer

Results

Enable

Trigger
Trigger

Enable

1
Soft

Event 7

Soft

Event 6

Soft

Event 5

Soft

Event 4

Soft

Event 3

Soft

Event 2

Soft

Event 1

Soft

Event 0

2

Reserved

3

4

User Data Option (16-bit integer)

5

6

User Data Length (16-bit integer)

7

8 User Data 0

…

499 User Data 491

PCCC Object

DataMan has limited support for the Rockwell PCCC object. This allows legacy PLC‟s (PLC-5,

SLC, etc) to communicate with DataMan using their native PCCC command set and explicit

messaging. The PCCC object allows DataMan to look like a Rockwell PLC-5 logic controller.

PCCC commands are organized to work with “data tables” that exist in legacy logic

controllers. Each data table is an array of a give data type (BYTE, INT, FLOAT, etc). The

commands are oriented to read/write one or more data items of a given data table. Items

are addressed by specifying the data table and the index of the item in the table (indexes

base from 0). For instance to read the 6th integer in PLC data table you would send the

PCCC command to read N7:5. “N” specifies an integer table, “7” is the table number in the

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 34

EtherNet/IP

PLC (each table has a unique numeric identifier – assigned when the user PLC program was

created), and “5” is the index into the table (note indexes begin at 0).

The PCCC object in DataMan maps the read and write requests to ID Reader assemblies (or

in one special case to the DMCC service). Read commands return data from the Input

assembly (instance 11). Write commands send data to the Output assembly (instance 21).

In essence the PCCC Object gives the outward appearance of PLC-5 data tables but is

actually accessing the assembly data. Currently the implementation only supports an

Integer data table (N7) and an ASCII data table (A9). There is one special case of String

data table (ST10:0) for DMCC.

Table Data Type Table Size

N7 Integer (16-bit) 250 elements

A9 ASCII (8-bit) 500 elements

ST10 String 1 element

The ResultCode value is located at word offset 5 (counting from 0) of the Input Assembly.

To access this value you would issue the following PLC command.

The decode ResultData begins at byte offset 16 (counting from 0) of the Input Assembly.

To read the first 4 bytes of result data you would issue the following PLC command.

ASCII Table A9

Word 1 Byte 1

. . .

Byte 16

. . .

Byte n

Byte 0

Byte 17

Byte 18

PCCC Read 4

elements @ “A9:16”

PLC Command
Input Assembly

Byte 1

Byte 16

Byte 17

. . .

Byte n

Byte 0

Byte 18

Byte 19 Byte 19

. . .

Integer Table N7

Word 1 Word 1

. . .

Word 5

. . .

Word n

Word 0

Word 6

Word 7

PCCC Read 1

element @ “N7:5”

PLC Command
Input Assembly

Word 1 Word 1

. . .

Word 5

. . .

Word n

Word 0

Word 6

Word 7

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 35

EtherNet/IP

The UserData begins at word offset 4 (counting from 0) of the Output Assembly. To write 4

words of UserData you would issue the following PLC command.

The bit to trigger an acquisition is in byte offset 0 of the Output Assembly. To write to this

byte you would issue the following PLC command.

The PCCC Object supports a special case mapping of a string table element (ST10:0) to the

DMCC service. Any string written to ST10:0 will be passed to the DMCC service for

processing. This allows PCCC write string commands to be used to invoke DMCC

commands.

NOTE

The string table is only one element in size. Writing to the other elements will return an

error.

String Table ST10

String 0 PCCC Write 1

element @ “ST10:0”

PLC Command

DMCC

Service

ASCII Table A9

Word 1
Byte 1

Byte 2

Byte 3

. . .

Byte n

Byte 0

Byte 4

Byte 5

PCCC Write 1

element @ “A9:0”

PLC Command Output Assembly

Word 1 Byte 1

Byte 2

Byte 3

. . .

Byte n

Byte 0

Byte 4

Byte 5

Integer Table N7

Word 1 . . .

Word 8

Word 4

Word n

Word 0

Word 5

Word 6

PCCC Write 4

elements @ “N7:4”

PLC Command
Output Assembly

. . .

Word 4

Word 5

Word n

Word 0

Word 6

Word 7 Word 7

Word 8

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 36

EtherNet/IP

Rockwell ControlLogix Examples
Implicit Messages transmit time-critical application specific I/O data, and can be point-to-

point or multicast. Explicit messages require a response from the receiving device. As a

result, explicit messages are better suited for operations that occur less frequently. An

instruction to send a DMCC command is an example of an explicit message.

Implicit Messaging

EtherNet/IP implicit messaging allows a DataMan reader‟s inputs and outputs to be mapped

into tags in the ControlLogix PLC. Once these connections are established the data is

transferred cyclically at a user defined interval (10ms, 50ms, 100ms, etc).

The figure below represents Ethernet-based I/O through EtherNet/IP:

The Input Assembly and Output Assembly map various attributes (data) from the ID

Reader object: The Input Assembly is the collection of DataMan reader data values sent to

the PLC (PLC inputs); and the Output Assembly is the collection of data values received by

the DataMan reader from the PLC (PLC outputs).

Establishing an Implicit Messaging Connection

To setup an EtherNet/IP implicit messaging connection between a DataMan and a

ControlLogix controller, the DataMan reader must first be added to the ControlLogix I/O

Configuration tree. The most efficient method is to use the Add-On-Profile. This example

assumes that the Add-On-Profile has already been installed. If you do not have the Add-

On-Profile, see Section Using the Generic EtherNet/IP Profile.

To establish an implicit messaging connection with a ControlLogix PLC:

1. Open RSLogix5000 and load your project (or select “File->New…” to create a new

one).

From the I/O Configuration node, select the Ethernet node under the project Ethernet

Module, right-click on the icon and select New Module from the menu:

DataMan ID Reader

Input

Assembly

Output

Assembly

ID Reader

Object

Decode

Subsystem

DMCC

Subsystem

 Acquisition

Subsystem

 DataMan:I

 DataMan:O

ControlLogix

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 37

EtherNet/IP

2. From the Select Module dialog, choose your model of DataMan ID Reader from the list.

NOTE

This option will only be available after the DataMan Add-On Profile has been installed.

NOTE

The remainder of the steps is identical regardless of which DataMan model is selected.

3. After the selection is made, the configuration dialog for the DataMan ID Reader system

will be displayed. Give the module a name and enter the DataMan‟s IP address. The

default is a bidirectional (send/receive) connection consisting of control, status, and 32

bytes of result data with keying disabled. To change this default connection, select the

“Change…” button. If no change is required skip over the next step.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 38

EtherNet/IP

4. Change the connection configuration.

Selecting the “Change…” button will bring up the Module Definition dialog. This dialog is

used to alter the connection configuration. You can change:

 DataMan revision

 Electronic keying

 Connection type (bidirectional/receive-only)

 Amount of data received (from the DataMan)

 Amount of data sent (to the DataMan)

Electronic Keying: Defines the level of module type checking that is performed by the

PLC before a connection will be established.

Exact Match – All of the parameters must match or the connection will be rejected.

 Vendor

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 39

EtherNet/IP

 Product Type

 Catalog Number

 Major Revision

 Minor Revision

Compatible Module – The following criteria must be met, or else the inserted module will

reject the connection:

 The Module Types must match

 Catalog Number must match

 Major Revision must match

 The Minor Revision of the module must be equal to or greater than the one specified in

the software.

Disable Keying – The controller will not employ keying at all.

Connection: Defines the type of data flow.

Data (Bidirectional) – The connection will send data (to the DataMan) and receive data

(from the DataMan).

Input (Results only) – The connection will only receive data (from the DataMan). Generally

used in situations where more than one PLC needs to receive data from the same DataMan

device.

Input Results from Sensor: Defines the amount of data received on the connection

(from the DataMan). The minimum amount is the Status data only. The connection can be

configured to also receive read result data. The amount of result data received is defined in

fixed increments (16 bytes, 32 bytes, 64 bytes etc). The size should be selected to return

no more than the largest code size to be read by the application. Setting the size larger

wastes network bandwidth and diminishes performance.

Output Data to Sensor: Defines the amount of data transmitted on the connection (to the

DataMan). The minimum amount is the Control data only. The connection can be

configured to also send user data. The amount of user data sent is defined in fixed

increments (16 bytes, 32 bytes, 64 bytes etc).

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 40

EtherNet/IP

5. The final step is configuring the connection rate. The rate at which data is

transmitted/received is defined as the Requested Packet Interval (RPI). The RPI

defines how frequently the data is transmitted/received over the connection. To

optimize network performance this rate should be set no lower than absolutely

required by a given application. In general it should be set no lower than ½ the

expected maximum read rate of the user application. Setting it lower wastes

bandwidth and does not improve processing performance.

6. Select the “Connection” tab of the “New Module” dialog to set the rate.

7. After adding the module to ControlLogix, the I/O tree should appear as follows:

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 41

EtherNet/IP

8. When the DataMan module is added to the I/O tree RSLogix 5000 creates tags that

map to the DataMan reader Input and Output Data (i.e. the Input & Output Assembly

Objects in the DataMan Reader). These tags can be found under the “Controller Tags”

node of the project tree.

NOTE

The base name of these tags is the name you gave to the DataMan Module that you added

to the I/O Configuration in the earlier steps.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 42

EtherNet/IP

The tags are organized in two groups: Status and Control. The Status group represents all

the data being received (from the DataMan). The Control group represents all the data

being sent (to the DataMan).

These tags are the symbolic representation of the DataMan Assembly Object contents. The

PLC ladder is written to access these tag values. By monitoring or changing these tag

values the PLC ladder is actually monitoring and changing the DataMan Assembly Object

contents.

NOTE

There is a time delay between the DataMan and these PLC tag values (base on the

configured RPI). All PLC ladder must be written to take that time delay into account.

Accessing Implicit Messaging Connection Data

The section above details establishing an implicit message connection between a

ControlLogix and a DataMan ID Reader. This example assumes that the DataMan Add-On-

Profile is being utilized. One aspect of the Add-On-Profile is that it will automatically

generate ControlLogix tags representing the connection data.

The generated tags are divided into two groups: Status & Control. The Status group

represents all the data being received (from the DataMan). The Control group represents

all the data being sent (to the DataMan).

A description of the Status tag group follows. This is the data received by the ControlLogix

from the DataMan reader.

 TriggerReady: Indicates when the DataMan reader can accept a new trigger. This tag

is True when the Control tag “TriggerEnable” has been set and the sensor is not

currently acquiring an image.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 43

EtherNet/IP

 TriggerAck: Indicates when the DataMan reader has been triggered (i.e. the Control

tag “Trigger” has been set to True). This tag will stay set until the Trigger tag is

cleared.

 Acquiring: Indicates when the DataMan reader is currently acquiring an image; either

by setting the Trigger bit or by an external trigger.

 MissedAcq: Indicates when the DataMan reader misses an acquisition trigger; cleared

when the next successful acquisition occurs.

 Decoding: Indicates when the DataMan reader is decoding an acquired image.

 DecodeCompleted: Tag value is toggled (10 or 01) on the completion of a

decode.

 ResultsBufferOverrun: Indicates when the DataMan reader has discarded a set of

decode results because the results queue is full. Cleared when the next set of results

are successfully queued.

 ResultsAvailable: Indicates when a set of decode results are available (i.e. the

ResultID, ResultCode, ResultLength and ResultsData tags contain valid data).

 GeneralFault: Indicates when a fault has occurred (i.e. Soft event “SetMatchString”

or “ExecuteDMCC” error has occurred).

 TrainCodeAck: Indicates that the soft event “TrainCode” has completed.

 TrainMatchStringAck: Indicates that the soft event “TrainMatchString” has

completed.

 TrainFocusAck: Indicates that the soft event “TrainFocus” has completed.

 TrainBrightnessAck: Indicates that the soft event “TrainBrightness” has completed.

 UnTrainAck: Indicates that the soft event “UnTrain” has completed.

 ExecuteDmccAck: Indicates that the soft event “ExecuteDMCC” has completed.

 SetMatchStringAck: Indicates that the soft event “SetMatchString” has completed.

 TriggerID: Value of the next trigger to be issued. Used to match triggers issued with

corresponding result data received later.

 ResultID: The value of TriggerID when the trigger that generated these results was

issued. Used to match TriggerID‟s with result data.

 ResultCode: Indicates success/failure of this set of results.

Bit 0 ,1=read 0=no read

Bit 1 ,1=validated 0=not validated (or validation not in use)

Bit 2 ,1=verified 0=not verified (or verification not in use)

Bit 3 ,1=acquisition trigger overrun

Bit 4 ,1=acquisition buffer overflow (not the same as result buffer overflow).

Bits 5-15 ,reserved (future use)

 ResultExtended: Currently unused.

 ResultLength: Number of bytes of result data contained in the ResultData tag.

 ResultData: Decode result data.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 44

EtherNet/IP

A description of the Control tag group follows. This is the data sent from the ControlLogix

to the DataMan reader.

 TriggerEnable: Setting this tag enables EtherNet/IP triggering. Clearing this field

disables the EtherNet/IP triggering.

 Trigger: Setting this tag triggers an acquisition when the following conditions are

met:

 The TriggerEnable tag is set.

 No acquisition/decode is currently in progress.

 The device is ready to trigger.

 ResultsBufferEnable: When set, the decode results will be queued. Results are

pulled from the queue (made available) each time the current results are

acknowledged. until acknowledged by the PLC. The Decode ID, Decode Result and

Decode ResultsData fields are held constant until the DecodeResultsAck field has

acknowledged them and been set. The DataMan reader will respond to the

acknowledgement by clearing the ResultsValid bit. Once the DecodeResultsAck field is

cleared the next set of decode results will be posted.

 ResultsAck: The ResultsAck tag is used to acknowledge that the PLC has read the

latest results. When ResultsAck is set, the ResultsAvailable tag will be cleared. If

results buffering is enabled the next set of results will be made available when the

ResultsAck tag is again cleared.

 TrainCode: Changing this tag from 0 to 1 will cause the train code operation to be

invoked.

 TrainMatchString: Changing this tag from 0 to 1 will cause the train match string

operation to be invoked.

 TrainFocus: Changing this tag from 0 to 1 will cause the train focus operation to be

invoked.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 45

EtherNet/IP

 TrainBrightness: Changing this tag from 0 to 1 will cause the train brightness

operation to be invoked.

 Untrain: Changing this tag from 0 to 1 will cause the un-train operation to be

invoked.

 ExecuteDMCC: Changing this tag from 0 to 1 will cause the DMCC operation to be

invoked. A valid DMCC command string must be written to UserData prior to invoking

this soft event.

 SetMatchString: Changing this tag from 0 to 1 will cause the set match string

operation to be invoked. The match string data must be written to UserData prior to

invoking this soft event.

 UserDataOption: Currently unused.

 UserDataLength: Number of bytes of user data contained in the UserData tag.

 UserData: This data is sent to the DataMan reader to support acquisition and/or

decode.

Verifying Implicit Messaging Connection Operation

The DataMan reader has been added as an I/O device in a ControlLogix project. After this

project is downloaded to the controller, the I/O connection will be established. Once a

successful connection has been established, cyclic data transfers will be initiated, at the

requested RPI.

To verify a proper I/O connection, follow these steps:

1. Download the project created above to the ControlLogix controller.

2. Upon the completion of the download, the project I/O indicator should be “I/O OK”.

This signifies that the I/O connection has been completed successfully.

To verify the correct, 2-way transfer of I/O data, in RSLogix, go to the controller tags and

change the state of the TriggerEnable bit from 0 to 1:

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 46

EtherNet/IP

3. The TriggerReady tag changes to 1.

4. Triggering is now enabled. Whenever the Trigger tag is changed from 0 to 1, the

DataMan reader will acquire an image. Note that the current TriggerID value is 1. The

results of the next trigger to be issued should come back with a corresponding

ResultID of 1.

5. After the acquisition/decode has completed, the DecodeCompleted tag will toggle and

the ResultsAvailable tag will go to 1. In the example shown here a successful read has

occurred (ResultCode bit 0 = 1) and the read has returned 16 bytes of data

(ResultLength=16). The data can be found in the ResultData tag.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 47

EtherNet/IP

Explicit Messaging

Unlike implicit messaging, explicit messages are sent to a specific device and that device

always responds with a reply to that message. As a result, explicit messages are better

suited for operations that occur infrequently. Explicit messages can be used to read and

write the attributes (data) of the ID Reader Object. They may also be used for acquiring

images, sending DMCC commands and retrieving result data.

Issuing DMCC Commands

One of the more common explicit messages sent to a DataMan ID Reader is an instruction

to execute a DMCC command. Explicit messages are sent from ControlLogix to a DataMan

using MSG instructions. There are two different paths for invoking DMCC messages with

explicit messaging; via the PCCC Object or via the ID Reader Object “SendDMCC” service.

In this example we show the SendDMCC service.

The CIP STRING2 format is required for transmission across EtherNet/IP (that is, 16-bit

length value followed by actual string characters, no null terminator). But Logix stores

strings in a slightly different format (i.e. 32-bit length value followed by actual string

characters, no null terminator). Therefore some of the sample ladder involves converting

to/from the two different string formats.

NOTE

This example is intended as a demonstration of DataMan explicit messaging behavior. This

same operation could be written in much more efficient ladder but would be less useful as a

learning tool.

1. Add the following tags to the ControlLogix Controller Tags dialog:

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 48

EtherNet/IP

Send_DMCC_Command: Boolean flag used to initiate the command.

DMCC_Command_String: String containing the DMCC command to execute.

DMCC_Result_String: String receiving the DMCC command results

Message_Data: Temp buffer holding the data to send via the MSG instruction.

Message_Result: Temp buffer holding the data received via the MSG instruction.

Message_Pending: Boolean flag used to indicate that a message is in process.

MSG_DMCC: Data structure required by the Logix MSG instruction.

2. Add the following two rungs to the MainRoutine of your ControlLogix

project:

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 49

EtherNet/IP

3. Edit the MSG instruction. Configure it for “CIP Generic”, service 0x34 “SendDMCC”,

class 0x79 “ID Reader Object” and instance 1. Set the source to “Message_Data” and

the destination to “Message_Result”.

4. On the MSG instruction “Communication” tab, browse for and select the DataMan

which you added to the project I/O Configuration tree. This tells Logix where to send

the explicit message.

5. Download to the ControlLogix and place in “Run Mode”.

6. To operate:

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 50

EtherNet/IP

 Place a DMCC command in the “DMCC_Command_String” tag. For example “||>GET

TRIGGER.TYPErl”. Note the rl at the end of the string. This is how Logix

represents a CRLF.

 Toggle the “Send_DMCC_Command” tag to 1.

 When the “Send_DMCC_Command” tag goes back to 0 execution is complete. The

DMCC command results will be found in “DMCC_Result_String”.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 51

EtherNet/IP

Rockwell CompactLogix Examples
CompactLogix differs very little from ControlLogix in terms of programming. The

ControlLogix examples apply to equally to CompactLogix systems. There is only a slight

difference in adding the DataMan device in the project I/O tree.

The I/O Configuration tree in a CompactLogix project looks a bit different from a

ControlLogix project. Regarding the Ethernet connection, the difference is that the Ethernet

logic module is actually embedded in the CompactLogix processor module. It is displayed in

the I/O Configuration tree as if it were a separate module on the backplane. This module is

also configured exactly like a ControlLogix Ethernet module.

The DataMan module is added in the same way for CompactLogix as for ControlLogix.

Right-click on the Ethernet node in the I/O Configuration tree and select “New

Module”.

From the “Select Module” dialog, choose your model of DataMan ID Reader from the list.

After the selection is made, the configuration dialog for the DataMan ID Reader system will

be displayed. From this point on configuration and programming are done exactly as shown

in the ControlLogix section above.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 52

EtherNet/IP

Rockwell SLC 5/05 Examples

This section outlines a PCCC (PC3) Communications configuration between a DataMan

reader and the PLC. This example uses the Allen-Bradley SLC5/05 and Rockwell 500

software.

Setting up the PLC for Ethernet Communication

1. From within the RSLogix 500 software program, open the .RSS file, then open the

Channel Configuration dialog (Project Folder > Controller Folder > Channel

Configuration)

2. The Allen-Bradley SLC has 2 channels available for configuration: Channel 1

(Ethernet); and Channel 0 (DF1 Full Duplex - serial). Click on the Chan. 1 - System

tab.

3. Configure Channel 1 (Ethernet) as necessary. Consult with a network administrator for

proper settings.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 53

EtherNet/IP

4. Configure the Timeouts as required.

Message Instruction (MSG)

Message instructions may now be constructed within the application. Refer to the RSLogix

500 documentation for expanded instructions for developing messages.

The following setup parameters can be configured within a Message (MSG) Instruction.

 Type: Peer-To-Peer. This cannot be modified.

 Read/Write: Select the function you want to perform on a DataMan reader. Read

retrieves data from the DataMan; Write sends data to the DataMan.

 Target Device: Choose PLC5 to talk to a DataMan reader. This tells the SLC which

communication protocol to use. The DataMan reader acts much like a ControlLogix

controller (see Rockwell document 13862).

 Local/Remote: Choose Local to indicate that the DataMan reader is on the same

network as the SLC; Remote tells the SLC that you will be communicating to a

DataMan on another network. For remote communication, you must direct the

message through another device acting as a gateway to that secondary network.

Typically, this could be an Allen-Bradley ControlLogix controller. (Refer to Rockwell

documentation on how to address devices on other networks through a gateway.)

 Control Block: This is a temporary integer file that the MSG instruction uses to store

data (i.e., IP address, message type, etc.). This is typically not the user data to be

sent.

 Control Block Length: This is automatically computed by the MSG instruction.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 54

EtherNet/IP

 Setup Screen: Selecting Setup Screen will open the Message Instruction Setup

dialog.

The following setup parameters can be configured within an MSG Instruction Setup screen.

This Controller section:

 Communication Command: Should be the same command (READ/WRITE) that was

chosen on the first screen (as seen in MSG Instruction screen).

 Data Table Address: This is the location of the data file on the SLC where data will

be written to (READ) or sent from (WRITE) (as seen in MSG Instruction screen). In

this instance, 'F8:0', 'F' indicates the float file, '8' indicates the file number 8, and '0'

indicates the offset into that file (in this case, start at the 0th element). The figure

below shows an example of the Float Table accessed from the RSLogix 500 main

screen.

 Size in Elements: This is the number of elements (or individual data) to send. In this

example, two elements are being sent (3.14 and 78.87).

 Channel: Depends on the configuration of the SLC. In the SLC, Channel 1 is the

Ethernet port.

Target Device section:

 Message Timeout: Choose an appropriate length of time in which the DataMan

reader will be able to respond. If the DataMan does not respond within this length of

time, the MSG instruction will error out. This parameter cannot be changed from this

screen. Message Timeout is determined by the parameters entered in the Channel 1

setup dialog.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 55

EtherNet/IP

Data Table Address: This is the location on the DataMan reader where data will be read

or written to. In this instance, 'N7:1', 'N' indicates that the data is of type integer (16-bit);

'7' is ignored by the DataMan (data is always being written to the Output Assembly, and

read from the Input Assembly); and the '1' is the element offset from the start of the

target buffer. For example: If the message were a READ, 'N7:2' would instruct to read the

3rd integer (the ':2' indicates the 3rd element, due to the SLC's 0-based index) from the

Input Assembly (because a READ gets data from the DataMan's Input Assembly). If the

message were a WRITE, 'N7:12' would indicate to write a (16-bit) integer value to the 13

integer location of the Output Assembly.

NOTE

The ST10:0 destination address is a special case used for sending DMCC commands to a

DataMan reader. Any string sent to ST10:0 will be interpreted as a DMCC command.

 Local/Remote: Set to Local or Remote, depending on the application.

 MultiHop: This setting is dependent on the information previously entered. For

successful In-Sight communication, this should YES at this time.

Sending DMCC Commands from an SLC 5/05

1. Configure the SLC5/05 as necessary.

2. Create a String Table that will hold your DMCC commands.

3. Add the required DMCC command strings to the Data File.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 56

EtherNet/IP

4. Add a new Message (MSG) instruction to your ladder logic and configure it as shown in

the following example:

5. Enter the MSG Setup Screen and configure it as follows:

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 57

EtherNet/IP

This Controller Parameter Description

Data Table

Address
ST10:0 First element from the String Table (ST) created above

Size in Elements 1
Always set to 1. PCCC MSG only allows 1 string (therefore

1 command) to be sent at a time.

Channel 1 Set this to the Ethernet channel of your controller.

Target Device Parameter Description

Message Timeout (From channel configuration dialog)

Data Table

Address
ST10:0

This is the destination address. For DMCC commands, this

will always be ST10:0

6. Click the MultiHop tab and configure it as required (i.e. set IP address of DataMan).

7. When everything is configured, close the MSG window.

8. Save your ladder logic, download it to the controller, then go online and set the

controller in RUN mode.

9. Trigger the message to send it to the DataMan reader.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 58

EtherNet/IP

Message Instruction Results

The Enable (EN) bit of the message instruction will be set to 1 when the input to the

instruction is set high. The Done (DN) bit will be set to 1 when DataMan has replied that

the DMCC command was received and executed with success. If the Error bit (ER) is

enabled (set to 1), there has been a problem with the message instruction. If an error

occurs, click the Setup Screen for the MSG instruction. The Error Code will be shown at the

bottom of the window.

Using the Generic EtherNet/IP Profile

For devices without a specific Add-On-Profile Rockwell provides a Generic EtherNet/IP

profile. This profile allows you to create implicit messaging connections but lacks the

automatic tag generation feature of a specific product Add-On-Profile.

Establishing a Generic Implicit Messaging Connection

To setup an EtherNet/IP implicit messaging connection between a DataMan and a

ControlLogix controller, the DataMan reader must first be added to the ControlLogix I/O

Configuration tree. This can be accomplished with the Rockwell provided generic profile.

To establish a generic implicit messaging connection with a ControlLogix PLC:

1. Open RSLogix5000 and load your project (or select “File->New…” to create a new

one).

2. From the I/O Configuration node, select the Ethernet node under the project Ethernet

Module, right-click on the icon and select New Module from the menu:

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 59

EtherNet/IP

3. From the Select Module dialog, choose the Allen-Bradley Generic Ethernet Module.

4. After the selection is made, the configuration dialog for the Generic Ethernet Module

will be displayed. Configure the following:

 Give the module a name.

 Enter your DataMan‟s IP address.

 Set the Comm Format to “Data – INT”. This tells the module to treat the data as an

array of 16-bit integers.

 Input Assembly: Set instance 11. Set the size to the amount of Input Assembly data

you want the PLC to receive. Basic “Status” data requires 8 integers. The amount

beyond that will be the actual decode result data. In the example below the size is set

to 24 (8 for status + 16 for result data). This connection will receive the status info

plus 32 bytes of result data.

 Output Assembly: Set instance 21. Set the size to 4 integers. This size is sufficient to

send all required “Control” data to the DataMan.

 Configuration Assembly: Set instance 1. Set size to zero (no used).

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 60

EtherNet/IP

5. The final step is configuring the connection rate. The rate at which data is

transmitted/received is defined as the Requested Packet Interval (RPI). The RPI

defines how frequently the data is transmitted/received over the connection. To

optimize network performance this rate should be set no lower than absolutely

required by a given application. In no case should it be set to lower than ½ the

median scan rate of the PLC ladder program. Setting it lower wastes bandwidth and

does not improve processing performance.

6. After adding the generic module to ControlLogix, the I/O tree should appear as

follows.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 61

EtherNet/IP

7. When the Generic Module is added to the I/O tree RSLogix 5000 creates tags that map

to the DataMan reader Input and Output Data (i.e. the Input & Output Assembly

Objects in the DataMan Reader). These tags can be found under the “Controller Tags”

node of the project tree.

NOTE

The base name of these tags is the name you gave to the Generic Module that you added

to the I/O Configuration earlier.

The tags are organized in three groups: Config “MyDM200:C”, Input “MyDM200:I”, and

Output “MyDM200:O”. You can ignore the Config tags (no used). The Input tags represent

all the data being received (from the DataMan). The Ouput tags represent all the data

being sent (to the DataMan).

These tags are the data table representation of the DataMan Assembly Object contents.

The PLC ladder is written to access these tag values. By monitoring or changing these tag

values the PLC ladder is actually monitoring and changing the DataMan Assembly Object

contents.

NOTE

There is a time delay between the DataMan and these PLC tag values (based on the

configured RPI). All PLC ladder must be written to take that time delay into account.

Accessing Generic Implicit Messaging Connection Data

The section above details establishing an implicit message connection between a

ControlLogix and a DataMan ID Reader using the Generic Module profile. Unlike the

DataMan Add-On-Profile the Generic profile does not automatically generate named tags

representing the individual data items within an Assembly Object. Instead it simply

generates an array of data according to the size of the connection you defined.

To access individual data items within an Assembly Object you must manually select the

correct tag offset and data subtype (if necessary) within the tag array that the Generic

profile provided. This can be awkward and error prone since it requires you to manually

reference the vendor documentation which defines the Assembly Objects.

NOTE

The start of the Input tags “MyDM200:I.Data[0]” maps directly to the start of the DataMan

Input Assembly. Likewise, the start of the Output tags “MyDM200:O.Data[0]” maps directly

to the start of the DataMan Output Assembly.

Examples

Input Assembly “TriggerReady”: Bit 0 of word 0 of the Input Assembly. From the Input tag

array for the DataMan select bit 0 of word 0.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 62

EtherNet/IP

Input Assembly “ResultLength”: Word 7 of the Input Assembly. From the Input tag array

for the DataMan select word 7.

Output Assembly “Trigger”: Bit 1 of word 0 of the OutputAssembly. From the Output tag

array for the DataMan select bit 1 of word 0.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 63

MC Protocol

MC Protocol
The MC Protocol uses standard Ethernet hardware and software to exchange I/O data,

alarms, and diagnostics. It is Mitsubishi Electric‟s publicly available, standardized

communication format for communicating with Q, iQ and L Series PLCs through Ethernet or

serial connections. DataMan supports MC Protocol on Ethernet only.

By default the DataMan has MC Protocol disabled. The protocol can be enabled in the Setup

Tool, via DMCC, or by scanning a parameter code.

DMCC
The following commands can be used to enable/disable MC Protocol. The commands can be

issued via RS-232 or Telnet connection.

NOTE

Because you have to make changes to the Telnet client provided by Windows to

communicate with DataMan, it is recommended you use third party clients such as PuTTY.

Enable:

||>SET MC-PROTOCOL.ENABLED ON

||>CONFIG.SAVE

||>REBOOT

Disable:

||>SET MC-PROTOCOL.ENABLED OFF

||>CONFIG.SAVE

||>REBOOT

Reader Configuration Code
Scanning the following reader configuration codes will enable/disable PROFINET.

NOTE

You must reboot the device for the change to take effect.

Enable: Disable: Reboot:

Setup Tool
MC Protocol can be enabled by checking Enabled on the Industrial Protocols pane‟s MC

Protocol tab. Make sure you save the new selection by clicking Yes to the Reboot Required

message window.

NOTE

You must reboot your reader for the new settings to take effect.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 64

MC Protocol

MC Protocol Scanner
MC Protocol on DataMan is implemented as a client type device also referred to as a

scanner. All communication is initiated by the DataMan reader in the form of read and write

requests. The PLC acts as a passive server reacting to the read and write requests. Since

the PLC cannot initiate communication it relies on the reader to periodically ask (scan) the

PLC for any actions or information that the PLC requires (such as triggering or retrieving

read results).

Getting Started
By default, MC Protocol is not enabled on the DataMan reader. The protocol must be

enabled and the protocol configuration parameters must be set to correctly interact with a

PLC. Protocol configuration is accomplished via the DataMan Setup Tool.

1. From the Windows Start menu, start the Setup Tool.

2. Under Communication Settings, click the Industrial Protocols node.

3. Select the MC Protocol tab.

4. Enable the protocol and set the proper configuration settings.

MC Protocol configuration consists of two aspects; defining the network information and

defining the data to be exchanged. All configuration parameters are accessed via the MC

Protocol tab.

You must modify the “IP Address” to match the address of your PLC. Also, modify “Network

Number”, “PC Number” and “Destination Module” if they differ from your network.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 65

MC Protocol

NOTE

Make sure you select System Save Settings to save any changes made to the MC

Protocol configuration settings. Also, the reader must be rebooted for the new settings to

take effect.

Network Configuration

The network configuration defines all the information that the DataMan reader needs to

establish a connection with a PLC.

Name Default Range Description

IP Address <empty > Any valid IP address
IP Address of the PLC to

connect to.

Host Port

(Hex)
3000

Any Hex port number

1000-FFFF

Port number of the MC Protocol

channel on the PLC

Timeout

(ms)
1000 5 - 30000

Time to in milliseconds for a

response from the PLC to an

MC Protocol message.

Poll Interval

(ms)
1000 10 - 30000

Requested time in milliseconds

between successive polls of the

Control Block from the PLC.

PLC Series QCPU QCPU or LCPU
Defines frame type used.

Currently only 3E supported.

Network

Number
0 0 - 239

MC Protocol network number

to communicate with (0 = local

network)

PC Number 0xFF

1 -120 = station on CC-

Link IE field

network adapter

126 = Master station on

CC-Link IE field

network

255 = Direct connect to

local station

Station identifier on the

specified network of the

destination module.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 66

MC Protocol

Name Default Range Description

Destination

Module
0x3FF

0x3ff = Local station

(default)

0x3d0 = Control system

CPU

0x3d1 = Standby

system CPU

0x3d2 = System A CPU

0x3d3 = System B CPU

0x3e0 = CPU 1

0x3e1 = CPU 2

0x3e2 = CPU 3

0x3e3 = CPU 4

Module identifier of the device

to connect to.

Data Block Configuration

The data block configuration defines the data that will be exchanged between the DataMan

reader and the PLC. Six data blocks are available. Each block has a predefined function.

Not all data blocks are required. Configure only those data blocks which are needed by

your application. Typically the Control and Status blocks are defined because they control

most data flow. However, there are some use cases where even these blocks are not

required.

A data block is configured by defining the PLC Device type (that is, memory type), Device

offset and Number of Devices contained in the data block. If either the Device type or

Number of Devices is undefined, that block will not be used (that is, no data will be

exchanged for that block).

Block Name Supported Device Types Offset Number of Devices

Control <none>, D, W, R, ZR, M, X,

Y, L, F, B

0 - 65535 0, if type <none>

32, if bit type

2, if word type

 (read-only)

Status <none>, D, W, R, ZR, M, X,

Y, L, F, B

0 - 65535 0, if type <none>

32, if bit type

2, if word type

 (read-only)

PLC Input None, D, W, R, ZR 0 - 65535 0 - 960

PLC Output None, D, W, R, ZR 0 - 65535 0 - 960

Command None, D, W, R, ZR 0 - 65535 0 - 960

Command

Result

None, D, W, R, ZR 0 - 65535 0 - 960

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 67

MC Protocol

Interface
This section describes the interface to the DataMan reader as seen by the PLC via MC

Protocol. The interface model consists of 6 data blocks grouped in 3 logical pairs:

 Control and Status

 Input Data and Output Data

 String Command and String Response

Not all of the blocks are required. You may select which blocks are appropriate for your

particular application. However, Control and Status will generally be included for most

applications.

You can define the starting address and device type for each interface block that you

choose to use in your application. Undefined blocks will not be exchanged. For any transfer

(read or write) the entire block is sent, even if only one field within the block has changed

value. The protocol implementation will minimize network use by grouping as many value

changes as logically possible into a single transfer.

Control Block

The Control block contains bit type data. However, the block may be defined to exist in

either bit or word memory in the PLC. This block consists of the control signals sent from

the PLC to the reader. It is used by the PLC to initiate actions and acknowledge certain data

transfers.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved
Results

Ack

Buffer
Results
Enable

Trigger
Trigger
Enable

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Reserved

Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16

Reserved
Initiate

String
Cmd

Set User
Data

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24

Soft
Event 7

Soft
Event 6

Soft
Event 5

Soft
Event 4

Soft
Event 3

Soft
Event 2

Soft
Event 1

Soft
Event 0

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 68

MC Protocol

Control Block Field Descriptions

Bit Name Description

0 Trigger
Enable

This field is set to enable triggering via the Trigger bit. Clear
this field to disable the network triggering mechanism.

1 Trigger Setting this bit triggers an acquisition.

Note, the Trigger Ready bit must be set high before triggering
an acquisition.

2 Buffer

Results
Enable

When this bit is set, each read result set (ResultID,

ResultCode, ResultLength and ResultData fields) will be held

in the Output Block until it is acknowledged. Once
acknowledged, the next set of read results will be made
available from the buffer. If new read results arrive before the
earlier set is acknowledged the new set will be queued in the
reader‟s buffer. Up to 6 sets of read results can be held in the

reader‟s buffer. Refer to Section Operation for a description of
the acknowledgement handshake sequence.

3 ResultsAck Set by the PLC to acknowledge that it has received the latest

results (ResultID, ResultCode, ResultLength and ResultData
fields). When the reader sees this bit transition from 01 it

clears the ResultsAvailable bit. This forms a logical handshake
between the PLC and reader. If result buffering is enabled, the
acknowledgement will cause the next set of queued results to
be moved from the buffer. See Section Operation for a
description of the acknowledgement handshake sequence.

4-15 Reserved Future use

16 SetUserData Set by the PLC to signal that new UserData is available. After

reading the new UserData the reader sets SetUserDataAck to
signal that the transfer is complete. This forms a logical
handshake between the PLC and reader.

17 Initiate
StringCmd

Set by the PLC to signal that a new StringCommand is

available. After processing the command the reader sets
StringCmdAck to signal that the command result is available.
This forms a logical handshake between the PLC and reader.

18-23 Reserved Future use

24-31 SoftEvents Bits act as virtual discrete inputs. When a bit transitions from
01 the associated action is executed. After executing the

action the reader sets the corresponding SoftEventAck to
signal that the action is complete. This forms a logical
handshake between the PLC and reader.

Bit0: Train code

Bit1: Train match string

Bit2: Train focus

Bit3: Train brightness

Bit4: Un-Train

Bit5: Reserved (future use)

Bit6: Execute DMCC command

Bit7: Set match string

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 69

MC Protocol

Status Block

The status block contains bit type data. However, the block may be defined to exist in

either bit or word memory in the PLC. This block consists of the status signals sent from

the reader to the PLC. It is used by the reader to signal status and handshake certain data

transfers.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved
Missed

Acq
Acquiring

Trigger

Ack

Trigger
Ready

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

General
Fault

Reserved
Results

Available

Results

Buffer
Overrun

Decode

Complete
Toggle

Decoding

Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16

Reserved
String

Cmd Ack
Set User
Data Ack

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24

SoftEvent
Ack 7

SoftEvent
Ack 6

SoftEvent
Ack 5

SoftEvent
Ack 4

SoftEvent
Ack 3

SoftEvent
Ack 2

SoftEvent
Ack 1

SoftEvent
Ack 0

Status Block Field Descriptions

Bit Name Description

0 Trigger Ready Indicates when the reader is ready to accept a new

Trigger. The reader sets this bit when TriggerEnable has
been set and the reader is ready to accept a new trigger.

1 TriggerAck Indicates when the reader recognizes that Trigger has

been set. This bit will remain set until the Trigger bit has
been cleared.

2 Acquiring Set to indicate that the reader is in the process of
acquiring an image.

3 Missed Acq Indicates that the reader missed a requested acquisition

trigger. The bit is cleared when the next acquisition is
issued.

4-7 Reserved Future use

8 Decoding Set to indicate that the reader is in the process of

decoding an image.

9 Decode Complete
Toggle

Indicates new result data is available. Bit toggles state
(01 or 10) each time new result data becomes

available.

10 Results Buffer
Overrun

Set to indicate that the reader has discarded a set of read
results because the PLC has not acknowledged the earlier

results. Cleared when the next set of result data is
successfully queued in the buffer. This bit only has
meaning if result buffering is enabled.

11 Results Available Set to indicate that new result data is available. Bit will

remain set until acknowledged with ResultsAck even if
additional new read results become available.

12-14 Reserved Future use

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 70

MC Protocol

Bit Name Description

15 General Fault Set to indicate that an Ethernet communications fault has
occurred. Currently only used by soft event operations.

Bit will remain set until the next successful soft event or
until TriggerEnable is set low and then high again.

16 Set User Data Ack Set to indicate that the reader has received new

UserData. Bit will remain set until the corresponding
SetUserData bit is cleared. This forms a logical
handshake between the PLC and reader.

17 String

Cmd Ack

Set to indicate that the reader has completed processing

the latest string command and that the command
response is available. Bit will remain set until the
corresponding InitiateStringCmd bit is cleared. This forms
a logical handshake between the PLC and reader.

18-23 Reserved Future use

24-31 SoftEvent

Ack

Set to indicate that the reader has completed the soft

event action. Bit will remain set until the corresponding
SoftEvent bit is cleared. This forms a logical handshake
between the PLC and reader.

Bit0: Ack train code

Bit1: Ack train match string

Bit2: Ack train focus

Bit3: Ack train brightness

Bit4: Ack untrain

Bit5: Reserved (future use)

Bit6: Ack Execute DMCC command

Bit7: Ack set match string

Input Data Block

The Input Data block contains word type data. This is data sent from the PLC to the reader.

The block consists of user defined data that may be used as input to the acquisition/decode

operation.

Word 0 Word 1 Word 2..N

Reserved
User Data

Length
User Data

Input Data Block Field Descriptions

Word Name Description

0 Reserved Future use

1 User Data
Length

Number of bytes of valid data actually contained in the
UserData field.

2..N User Data User defined data that may be used as an input to the

acquisition/decode.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 71

MC Protocol

Output Data Block

The Output Data block contains word type data. This is data sent from the reader to the

PLC. The block consists primarily of read result data.

Word 0 Word 1 Word 2 Word 3 Word 4 Word 5..N

Reserved Trigger ID Result ID Result Code Result Length Result Data

Output Data Block Field Descriptions

Word Name Description

0 Reserved Future use

1 Trigger ID Trigger identifier. Identifier of the next trigger to be issued.
Used to match issued triggers with result data that is received
later. This same value will be returned as the ResultID of the
corresponding read.

2 Result ID Result set identifier. This is the value of TriggerID when the
corresponding trigger was issued. Used to match up triggers
with corresponding result data.

3 Result Code Indicates the success or failure of the read that produced this

result set.

Bit0: 1=Read, 0=No read

Bit1: 1=Validated, 0=Not Validated

Bit2: 1=Verified, 0=Not Verified

Bit3: 1=Acquisition trigger overrun

Bit4: 1=Acquisition buffer overrun

Bit5-15: Reserved (future use)

4 Result Data

Length

Number of bytes of valid data actually in the ResultData field.

5..N Result Data Result data from this acquisition/decode.

String Command Block

The String Command block contains word type data. This is data sent from the PLC to the

reader. The block is used to transport string based commands (DMCC) to the reader.

NOTE

Do not send string commands that change the reader configuration at the same time that

reads are being triggered. Changing configuration during acquisition/decode can lead to

unpredictable results.

Word 0 Word 1..N

Length String Command

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 72

MC Protocol

String Command Block Field Descriptions

Word Name Description

0 Length Number of bytes of valid data in the StringCommand field.

1..N String
Command

ASCII text string containing the command to execute. No null
termination required.

String Command Result Block

The String Command Result block contains word type data. This is data sent from the

reader to the PLC. The block is used to transport the response from string based

commands (DMCC) to the PLC.

Word 0 Word 1 Word 2..N

Result
Code

Length String Command Result

String Command Result Block Field Descriptions

Word Name Description

0 Result Code Code value indicating the success or failure of the command.
Refer to the Command Reference, available through the
Windows Start menu, for specific values.

1 Length Number of bytes of valid data in the StringCommand field.

2..N String

Command
Result

ASCII text string containing the command to execute. No null

termination required.

Operation
MC Protocol is a command/response based protocol. All communications are originated

from the DataMan reader. The reader must send read requests to the PLC at a periodic

interval to detect changes in the control bits.

Scanning

To initiate actions or control data transfer, the PLC changes the state of certain bits of the

Control block. Since only the reader can initiate communications, the reader scans (that is,

reads the Control block from the PLC) at a periodic rate. This rate is defined by the user.

After each scan, the reader will process changes in state of the bits in the Control block.

Some state changes require additional communications with the PLC, such as writing

updated acknowledge bit values or reading a new string command. These additional

communications are handled automatically by the reader. Other state changes initiate

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 73

MC Protocol

activities such as triggering a read or executing a soft event. The reader performs the

requested action and later reports the results.

For any transfer (read or write), the entire interface block is sent, even if only one field

within the block has changed value. The protocol implementation will minimize network

usage by grouping as many value changes as logically possible into a single transfer.

Typical Sequence Diagram

Handshaking

A number of actions are accomplished by means of a logical handshake between the reader

and PLC (triggering, transferring results, executing soft events, string commands, and so

on). This is done to ensure that both sides of a transaction know the state of the operation

on the opposite side. Network transmission delays will always introduce a finite time delay

in transfer data and signals. Without this handshaking, it is possible that one side of a

transaction might not detect a signal state change on the other side. Any operation that

has both an initiating signal and corresponding acknowledge signal will use this basic

handshake procedure.

The procedure involves a four-way handshake.

1. Assert signal

2. Signal acknowledge

DataMan PLC

Read (Control)

Read (Control)

Write (Status)

PLC sets Trigger bit

Periodic reads continue

throughout sequence

A
c
q
u
ir
in

g

Write (Status)

Write (Results)

D
e
c
o
d
in

g

Write (Status)

Reader sends results

then the updated

ResultsAvailable and

DecodeComplete bits.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 74

MC Protocol

3. De-assert signal

4. De-assert acknowledge

The requesting device asserts the signal to request an action (set bit 01). When the

target device detects the signal and the requested operation has completed, it asserts the

corresponding acknowledge (set bit 01). When the requesting device detects the

acknowledge, it de-asserts the original signal (10). Finally, when the target device

detects the original signal de-asserted, it de-asserts its acknowledge (bit 01). To function

correctly both sides must see the complete assert/de-assert cycle (01 and 10). The

requesting device should not initiate a subsequent request until the cycle completes.

Acquisition Sequence

DataMan can be triggered to acquire images by several methods. It can be done via the MC

Protocol by setting the Trigger bit or issuing a trigger String Command. It can also be done

via DMCC command (Telnet) or hardwired trigger signal. The Trigger bit method will be

discussed here.

On startup the TriggerEnable will be False. It must be set to True to enable triggering via

the MC Protocol Trigger bit. When the device is ready to accept triggers, the reader will set

the TriggerReady bit to True.

While the TriggerReady bit is True, each time the reader detects the Trigger bit change

from 01, it will initiate a read. The Trigger bit should be held in the new state until that

same state value is seen in the TriggerAck bit (this is a necessary handshake to guarantee

that the trigger is seen by the reader).

During an acquisition, the TriggerReady bit will be cleared and the Acquiring bit will be set

to True. When the acquisition is completed, the Acquiring bit will be cleared. When the

device is ready to begin another image acquisition, the TriggerReady bit will again be set to

True.

If results buffering is enabled, the reader will allow overlapped acquisition and decoding

operations. TriggerReady will be set high after acquisition is complete but while decoding is

still in process. This can be used to achieve faster overall trigger rates. If result buffering is

not enabled, the TriggerReady bit will remain low until both the acquisition and decode

operations have completed.

1

Trigger EN

Trigger Ready

Trigger

Trigger Ack

Acquiring

Missed Acq

2

1

1

1

2

2

2

M

M

M

3

3

3

3

Acquisition #1 Acquisition #2 Acquisition #3 Missed Acq

 PLC

 DataMan

1

1

1

1

2

 2

 2

 2

M

 M

M

3

3

3

3

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 75

MC Protocol

To force a reset of the trigger mechanism set the TriggerEnable to False until TriggerReady

is also set to False. Then, TriggerEnable can be set to True to re-enable acquisition.

As a special case, an acquisition can be cancelled by clearing the Trigger signal before the

read operation has completed. This allows for the cancellation of reads in Presentation and

Manual mode if no code is in the field of view. To ensure that a read is not unintentionally

cancelled, it is advised that the PLC hold the Trigger signal True until both TriggerAck and

ResultsAvailable are True (or DecodeComplete toggles state).

Decode / Result Sequence

After an image is acquired, it is decoded. While being decoded, the Decoding bit is set.

When the decode operation has completed, the Decoding bit is cleared. The

ResultsBufferEnable determines how decode results are handled by the reader.

If ResultsBufferEnable is set to False, then the read results are immediately placed into the

Output Data block, ResultsAvailable is set to True and DecodeComplete is toggled.

If ResultsBufferEnable is set to True, the new results are queued in a buffer and

DecodeComplete is toggled. The earlier read results remain in the Output Data block until

they are acknowledged by the PLC. After the acknowledgment handshake, if there are

more results in the queue, the next set of results will be placed in the Output Data block

and ResultsAvailable is set to True.

Results Buffering

There is an option to enable a queue for read results. If enabled, this allows a finite number

of sets of result data to be queued up until the PLC has time to read them. This is useful to

smooth out data flow if the PLC slows down for short periods of time.

1

Decoding

Trigger

Ready

Trigger

Trigger

Ack

Acquiring

Decode

Cmplt

2

1

1

1

2

2

1

Read #1
Read #2

1 2

2

2 Results

Avail

Results

Ack
1

1

h

t

t

p

:

/

/

w

w

w

.

f

a

c

e

b

o

o

k

.

c

o

m

/

PLC

DataMan

1 2

1

1

1

1

1

1

1

 2

 2

 2

 2

 2

 2

 2

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 76

MC Protocol

Also, if result buffering is enabled the reader will allow overlapped acquisition and decode

operations. Depending on the application this can be used to achieve faster overall trigger

rates. See Acquisition Sequence description above for further detail.

In general, if reads are occurring faster than results can be sent out, the primary difference

between buffering or not buffering determines which results get discarded. If buffering is

not enabled, the most recent results are kept and the earlier result (which was not read by

the PLC quickly enough) is lost. The more recent result will overwrite the earlier result. If

buffering is enabled (and the queue becomes full) the most recent results are discarded

until room becomes available in the results queue.

SoftEvents

SoftEvents act as “virtual” inputs. When the value of a SoftEvent bit changes from 0 1

the action associated with the event will be executed. When the action completes, the

corresponding SoftEventAck bit will change from 0 1 to signal completion.

The SoftEvent and SoftEventAck form a logical handshake. After SoftEventAck changes to

1, the original SoftEvent should be set back to 0. When that occurs, SoftEventAck will

automatically be set back to 0.

NOTE

Do not execute soft events that change the reader configuration at the same time that

reads are being triggered. Changing configuration during acquisition/decode can lead to

unpredictable results.

The “ExecuteDMCC” and “SetMatchString” soft event actions require user supplied data.

This data must be written to the UserData and UserDataLength area of the Input Data

block prior to invoking the soft event. Since both of these soft events depend on the

UserData, only one may be invoked at a time.

String Commands

The DataMan MC Protocol implementation includes a String Command feature. This feature

allows you to execute string-based DMCC commands over the MC protocol connection. The

DMCC command is sent to the reader via the String Command block. The DMCC command

result is returned via the String Command Result block. Initiating a command and

notification of completion is accomplished by signaling bits in the Control and Status blocks.

To execute a DMCC command, the command string is placed in the data field of the String

Command block. The command string consists of standard ASCII text. The command

format is exactly the same as would be used for a serial (RS-232) or Telnet connection.

The string does not need to be terminated with a null character. Instead, the length of the

string (that is, the number of ASCII characters) is placed in the length field of the String

Command block.

After executing the DMCC command, the result string is returned in the String Command

Result block. Similar to the original command, the result string consists of ASCII characters

in the same format as would be returned via serial or Telnet. Also, there is no terminating

null character. Instead the length of the result is returned in the Command String Result

length field. The Command String Result block also contains a numeric result code. This

allows you to determine the success or failure of the command without having to parse the

text string. The values of the result code are defined in the DMCC documentation.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 77

MC Protocol

General Fault Indicator

When an MC Protocol communication-related fault occurs, the “GeneralFault” bit will

change from 0 1. Currently the only fault conditions supported are soft event operations.

If a soft event operation fails, the fault bit will be set. The fault bit will remain set until the

next successful soft event operation, or, until TriggerEnable is set to 0 and then back to 1.

Examples
Included with the Setup Tool installer is an example PLC program created with Mitsubishi

(GX Works2) software. This simple program clearly demonstrates DataMan ID readers‟

capabilities and proper operation. The same operations can be achieved by using more

advanced features and efficient programming practices with Mitsubishi PLCs. However,

such an advanced program is less useful for demonstration purposes.

Function

The example application demonstrates the following operations:

1. Triggering a read

2. Getting read results

3. Executing string commands (DMCC)

4. Executing soft event operations

a. Train code

b. Train match string

c. Train focus

d. Train brightness

e. Un-train

f. Execute DMCC

g. Set match string

The “Main” program contains a PLC ladder rung to invoke each of these operations. The

operation is invoked by toggling the control bit on the rung from 0 1. This will invoke the

associated subroutine to perform the operation. When the operation is complete, the

subroutine will set the control bit back to 0.

SoftEvent

cycle #1

SoftEvent cycle #2

(failure occured)

SoftEvent

cycle #3

SoftEvent

SoftEventAck

GeneralFault

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 78

MC Protocol

Triggering a Read

The example provides two trigger options; “Continuous Trigger” and “Single Trigger”. As

the name implies, enabling the “Continuous Trigger” bit will invoke a continuous series of

read operations. Once enabled, the “Continuous Trigger” control bit will remain set until

you disable it. The “Single Trigger” control bit invokes a single read operation. This control

bit will automatically be cleared when the read is completed.

Primarily, the trigger subroutine manages the trigger handshake operation between the

PLC and the reader. The control Trigger bit is set, the PLC waits for the corresponding

TriggerAck status bit from the reader, and the control Trigger bit is reset. Refer to a

description of handshaking in Section Operation.

The trigger subroutine contains a delay timer. This is not required for operation. It exists

simply to add an adjustable artificial delay between reads for demonstration purposes.

Getting Read Results

For this example the operation of triggering a read and getting read results was

intentionally separated. This is to support the situation where the PLC is not the source of

the read trigger. For example, the reader may be configured to use a hardware trigger. In

such a case, only the get results subroutine would be needed.

Like the triggering subroutine, the get results subroutine manages the results handshake

operation between the PLC and the reader. However, it also copies the result data to

internal storage. The routine waits for the ResultsAvailable status bit to become active, it

copies the result data to internal storage, and then executes the ResultsAck handshake.

Refer to a description of handshaking in Section Operation.

The read result consists of a ResultCode, ResultLength, and ResultData. Refer to Section

Output Data Block Field Descriptions for details of the ResultCode values. The ResultLength

field indicates how many bytes of actual result data exist in the ResultData field. The

subroutine converts this byte length to word length before copying the results to internal

storage.

The get results subroutine gathers read statistics (number of good reads, number of no-

reads, and so on). This is not required for operation. It is simply for demonstration

purposes.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 79

MC Protocol

Execute String Commands (DMCC)

The string command feature provides a simple way to invoke DMCC commands from the

PLC. The command format and command result format is exactly identical to that used for

serial or Telnet DMCC operation.

This subroutine copies an example DMCC command (||>GET CAMERA.EXPOSURE) to the

String Command block and then manages the string command handshake operation

between the PLC and the reader to invoke the command and retrieve the command result.

Any valid DMCC command may be invoked with this mechanism. Refer to the DataMan

Command Reference document available through the Windows Start menu.

Execute Soft Events

Soft Events are used to invoke a predefined action. Each Soft Event is essentially a virtual

input signal. Each of the soft event subroutines manages the handshake operation between

the PLC and the reader to invoke the predefined action. The associated action is invoked

when the SoftEvent bit toggles from 0 1. The subroutine then watches for the associated

SoftEventAck bit from the reader which signals that the action is complete. For a

description of handshaking, see Section Operation.

NOTE

The “Execute DMCC” and “Set Match String” soft events make use of the Input Data block.

The subroutine for these two events copies the relevant data into the User Data fields of

the Input Data block and then invokes the User Data subroutine to transfer the data to the

reader. Only after the user data is transferred is the actual soft event action invoked. It is

required that the user data be transferred before invoking either of these events.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 80

MC Protocol

NOTE

The “Train Match String” soft event only prepares the training mechanism. The actual

training occurs on the next read operation. Therefore, a trigger must be issued following

“Train Match String”.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 81

Modbus TCP

Modbus TCP
Modbus is an application layer protocol. It provides client/server communication between

devices connected to different types of buses or networks. Modbus is a request/response

protocol, whose services are specified by using function codes.

Modbus TCP provides the Modbus protocol using TCP/IP. System port 502 is reserved for

Modbus communication. It uses standard Ethernet hardware and software to exchange I/O

data and diagnostics. DataMan provides Modbus TCP server functionality only.

By default, DataMan has the Modbus TCP protocol disabled. The protocol can be enabled in

the Setup Tool, via DMCC, or by scanning a parameter code.

DMCC
The following commands can be used to enable/disable Modbus TCP. The commands can be

issued via RS-232 or Telnet connection.

NOTE

Because you have to make changes to the Telnet client provided by Windows to

communicate with DataMan, it is recommended you use third party clients such as PuTTY.

Enable:

||>SET MODBUSTCP.ENABLED ON

||>CONFIG.SAVE

||>REBOOT

Disable:

||>SET MODBUSTCP.ENABLED OFF

||>CONFIG.SAVE

||>REBOOT

Reader Configuration Code
Scanning the following reader configuration codes will enable/disable Modbus TCP.

NOTE

You must reboot the device for the change to take effect.

Enable: Disable: Reboot:

Setup Tool
Modbus TCP can be enabled by checking Enabled on the Industrial Protocols pane‟s

Modbus TCP tab. Make sure you save the new selection by clicking Yes to the Reboot

Required message window.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 82

Modbus TCP

NOTE

You must reboot your reader for the new settings to take effect.

Modbus TCP Handler
Modbus TCP on DataMan is implemented as a server type device. All communication is

initiated by the PLC in the form of read and write requests. The PLC acts as a client which

actively sends read and write requests.

Getting Started
By default, Modbus TCP is not enabled on the DataMan reader. The protocol must be

enabled and the protocol configuration parameters must be set to correctly interact with a

PLC. Protocol configuration is accomplished via the DataMan Setup Tool.

1. From the Windows Start menu, start the Setup Tool.

2. Under Communication Settings, click the Industrial Protocols node.

3. Select the Modbus TCP tab.

4. Enable the protocol and set the proper configuration settings.

Modbus TCP configuration consists of two aspects; defining the network information and

defining the data to be exchanged. All configuration parameters are accessed via the

Modbus TCP tab.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 83

Modbus TCP

NOTE

Make sure you select System Save Settings to save any changes made to the Modbus

TCP configuration settings. Also, the reader must be rebooted for the new settings to take

effect.

Network Configuration

The network configuration defines all the information that the DataMan reader needs to

establish a connection with a PLC. In most cases the default values may be used and no

changes are need.

Name Default Range Description

Host Port 502 Fixed
Port number where Modbus TCP

can be accessed on this reader.

Max

Connections
3 1 - 6

Maximum number of

simultaneous Modbus TCP

connections.

Idle Timeout

(seconds)
120 1 - 3600

Timeout period after which the

Modbus TCP connection will be

closed. If no traffic is received

on a Modbus TCP connection for

this amount of time, the

connection will automatically be

closed.

String byte

swap
False True / False

String byte swap enable. If set

to True, bytes within each

register that forms a string will

be swapped.

Data Block Configuration

The data block configuration defines the data that will be exchanged between the DataMan

reader and the PLC. Six data blocks are available. Each block has a predefined function.

DataMan only supports Modbus TCP server operation. For server operation, only two

configuration options exist. By default the „Control‟ and „Status‟ data blocks are located in

bit address space (Coil and Discrete Input). If needed, one or both of these data blocks

may be redefined to exist in register address space (Holding Register and Input Register).

All other data block configurations are fixed.

Block Name Address Space Offset Quantity

Control Coil or Holding Register 0 32, if coil

2, if holding register

Status Discrete Input or Input

Register

0 32, if discrete input

2, if input register

PLC Input Holding Register 2000 1 – 2005

PLC Output Input Register 2000 1 - 2005

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 84

Modbus TCP

Block Name Address Space Offset Quantity

Command

String

Holding Register 1000 1 - 1000

Command

String Result

Input Register 1000 1 - 1000

Interface
This section describes the interface to the DataMan reader as seen by the PLC via Modbus

TCP. The interface model consists of 6 data blocks grouped in 3 logical pairs:

 Control and Status

 Input Data and Output Data

 String Command and String Response

The following list contains the data blocks, their start/end addresses and their length.

Data block Name Start

Address

End

address

Size Description

Control block 0 31 2 words bit access

Status block 0 31 2 words bit access

Input data block 2000 4004 2005 words word access

Output data block 2000 4004 2005 words word access

String Command

block

1000 1999 1000 words word access

String Response

block

1000 1999 1000 word access

Control Block

The Control block contains bit type data. This block consists of the control signals sent from

the PLC to the reader. It is used by the PLC to initiate actions and acknowledge certain data

transfers.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 85

Modbus TCP

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved
Results

Ack

Buffer

Results
Enable

Trigger
Trigger
Enable

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Reserved

Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16

Reserved
Initiate

String
Cmd

Set User
Data

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24

Soft
Event 7

Soft
Event 6

Soft
Event 5

Soft
Event 4

Soft
Event 3

Soft
Event 2

Soft
Event 1

Soft
Event 0

Control Block Field Descriptions

Bit Name Description

0 Trigger
Enable

This field is set to enable triggering via the Trigger bit. Clear
this field to disable the network triggering mechanism.

1 Trigger Setting this bit triggers an acquisition.

Note that the Trigger Ready bit must be set high before
triggering an acquisition.

2 Buffer

Results
Enable

When this bit is set, each read result (ResultID, ResultCode,

ResultLength and ResultData fields) will be held in the Output

Block until it is acknowledged. Once acknowledged, the next
set of read results will be made available from the buffer. If

new read results arrive before the earlier set is acknowledged
the new set will be queued in the reader‟s buffer. Up to 6 read
results can be held in the reader‟s buffer. Refer to Section
Operation for a description of the acknowledgement
handshake sequence.

3 ResultsAck Set by the PLC to acknowledge that it has received the latest

results (ResultID, ResultCode, ResultLength and ResultData
fields). When the reader sees this bit transition from 01 it

clears the ResultsAvailable bit. This forms a logical handshake
between the PLC and reader. If result buffering is enabled, the

acknowledgement will cause the next set of queued results to
be moved from the buffer. See Section Operation for a
description of the acknowledgement handshake sequence.

4-15 Reserved Future use

16 SetUserData Set by the PLC to signal that new UserData is available. After
reading the new UserData the reader sets SetUserDataAck to

signal that the transfer is complete. This forms a logical
handshake between the PLC and reader.

17 Initiate
StringCmd

Set by the PLC to signal that a new StringCommand is
available. After processing the command, the reader sets

StringCmdAck to signal that the command result is available.
This forms a logical handshake between the PLC and reader.

18-23 Reserved Future use

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 86

Modbus TCP

24-31 SoftEvents Bits act as virtual discrete inputs. When a bit transitions from
01 the associated action is executed. After executing the

action the reader sets the corresponding SoftEventAck to
signal that the action is complete. This forms a logical
handshake between the PLC and reader.

Bit0: Train code

Bit1: Train match string

Bit2: Train focus

Bit3: Train brightness

Bit4: Un-Train

Bit5: Reserved (future use)

Bit6: Execute DMCC command

Bit7: Set match string

Status Block

The status block contains bit type data. This block consists of the status signals sent from

the reader to the PLC. It is used by the reader to signal status and handshake certain data

transfers.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved
Missed

Acq
Acquiring

Trigger

Ack

Trigger
Ready

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

General
Fault

Reserved
Results

Available

Results

Buffer
Overrun

Decode

Complete
Toggle

Decoding

Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16

Reserved
String

Cmd Ack
Set User
Data Ack

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24

SoftEvent
Ack 7

SoftEvent
Ack 6

SoftEvent
Ack 5

SoftEvent
Ack 4

SoftEvent
Ack 3

SoftEvent
Ack 2

SoftEvent
Ack 1

SoftEvent
Ack 0

Status Block Field Descriptions

Bit Name Description

0 Trigger Ready Indicates when the reader is ready to accept a new

Trigger. The reader sets this bit when TriggerEnable has
been set and the reader is ready to accept a new trigger.

1 TriggerAck Indicates when the reader recognizes that Trigger has
been set. This bit will remain set until the Trigger bit has
been cleared.

2 Acquiring Set to indicate that the reader is in the process of
acquiring an image.

3 Missed Acq Indicates that the reader missed a requested acquisition

trigger. The bit is cleared when the next acquisition is
issued.

4-7 Reserved Future use

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 87

Modbus TCP

Bit Name Description

8 Decoding Set to indicate that the reader is in the process of
decoding an image.

9 Decode Complete
Toggle

Indicates new result data is available. Bit toggles state
(01 or 10) each time new result data becomes
available.

10 Results Buffer
Overrun

Set to indicate that the reader has discarded a set of read

results because the PLC has not acknowledged the earlier
results. Cleared when the next set of result data is

successfully queued in the buffer. This bit only has
meaning if result buffering is enabled.

11 Results Available Set to indicate that new result data is available. Bit will

remain set until acknowledged with ResultsAck even if
additional new read results become available.

12-14 Reserved Future use

15 General Fault Set to indicate that an Ethernet communications fault has

occurred. Currently only used by soft event operations.
Bit will remain set until the next successful soft event or
until TriggerEnable is set low and then high again.

16 Set User Data Ack Set to indicate that the reader has received new

UserData. Bit will remain set until the corresponding
SetUserData bit is cleared. This forms a logical
handshake between the PLC and reader.

17 String

Cmd Ack

Set to indicate that the reader has completed processing
the latest string command and that the command
response is available. Bit will remain set until the

corresponding InitiateStringCmd bit is cleared. This forms
a logical handshake between the PLC and reader.

18-23 Reserved Future use

24-31 SoftEvent

Ack

Set to indicate that the reader has completed the soft

event action. Bit will remain set until the corresponding
SoftEvent bit is cleared. This forms a logical handshake
between the PLC and reader.

Bit0: Ack train code

Bit1: Ack train match string

Bit2: Ack train focus

Bit3: Ack train brightness

Bit4: Ack untrain

Bit5: Reserved (future use)

Bit6: Ack Execute DMCC command

Bit7: Ack set match string

Input Data Block

The Input Data block is sent from the PLC to the reader. The block consists of user defined

data that may be used as input to the acquisition/decode operation.

Word 0 Word 1 Word 2..N

Reserved
User Data

Length
User Data

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 88

Modbus TCP

Input Data Block Field Descriptions

Word Name Description

0 Reserved Future use

1 User Data
Length

Number of bytes of valid data actually contained in the
UserData field.

2..N User Data User defined data that may be used as an input to the
acquisition/decode.

Output Data Block

The Output Data block is sent from the reader to the PLC. The block consists primarily of

read result data.

Word 0 Word 1 Word 2 Word 3 Word 4 Word 5..N

Reserved Trigger ID Result ID Result Code Result Length Result Data

Output Data Block Field Descriptions

Word Name Description

0 Reserved Future use

1 Trigger ID Trigger identifier. Identifier of the next trigger to be issued.

Used to match issued triggers with result data that is received
later. This same value will be returned as the ResultID of the

corresponding read.

2 Result ID Result identifier. This is the value of TriggerID when the
corresponding trigger was issued. Used to match up triggers
with corresponding result data.

3 Result Code Indicates the success or failure of the read that produced this

result set.

Bit0: 1=Read, 0=No read

Bit1: 1=Validated, 0=Not Validated

Bit2: 1=Verified, 0=Not Verified

Bit3: 1=Acquisition trigger overrun

Bit4: 1=Acquisition buffer overrun

Bit5-15: Reserved (future use)

4 Result Data

Length

Number of bytes of valid data actually in the ResultData field.

5..N Result Data Result data from this acquisition/decode.

String Command Block

The String Command block is sent from the PLC to the reader. The block is used to

transport string based commands (DMCC) to the reader.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 89

Modbus TCP

NOTE

Do not send string commands that change the reader configuration at the same time that

reads are being triggered. Changing configuration during acquisition/decode can lead to

unpredictable results.

Word 0 Word 1..N

Length String Command

String Command Block Field Descriptions

Word Name Description

0 Length Number of bytes of valid data in the StringCommand field.

1..N String
Command

ASCII text string containing the command to execute. No null
termination required.

String Command Result Block

The String Command Result block is sent from the reader to the PLC. The block is used to

transport the response from string based commands (DMCC) to the PLC.

Word 0 Word 1 Word 2..N

Result
Code

Length String Command Result

String Command Result Block Field Descriptions

Word Name Description

0 Result Code Code value indicating the success or failure of the command.
Refer to the Command Reference, available through the
Windows Start menu, for specific values.

1 Length Number of bytes of valid data in the StringCommand field.

2..N String
Command

Result

ASCII text string containing the command to execute. No null
termination required.

Operation
Modbus TCP is a request/response based protocol. All communications are originated from

the PLC. The reader acts as server.

Requests

To initiate actions or control data transfer, the PLC changes the state of certain bits of the

Control block and sends requests to the reader.

After each request, the reader will process changes in state of the bits in the Control block.

Some state changes require additional communications with the PLC, such as writing

updated acknowledge bit values or reading a new string command. These additional

communications are handled automatically by the reader. Other state changes initiate

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 90

Modbus TCP

activities such as triggering a read or executing a soft event. The reader performs the

requested action and later reports the results.

Typical Sequence Diagram

Handshaking

A number of actions are accomplished by means of a logical handshake between the reader

and the PLC (triggering, transferring results, executing soft events, string commands, and

so on). This is done to ensure that both sides of a transaction know the state of the

operation on the opposite side. Network transmission delays will always introduce a finite

time delay in transfer data and signals. Without this handshaking, it is possible that one

side of a transaction might not detect a signal state change on the other side. Any

operation that has both an initiating signal and corresponding acknowledge signal will use

this basic handshake procedure.

The procedure involves a four-way handshake.

1. Assert signal

2. Signal acknowledge

3. De-assert signal

4. De-assert acknowledge

The requesting device asserts the signal to request an action (set bit 01). When the

target device detects the signal and the requested operation has completed, it asserts the

corresponding acknowledge (set bit 01). When the requesting device detects the

acknowledge, it de-asserts the original signal (10). Finally, when the target device

detects the original signal de-asserted, it de-asserts its acknowledge (bit 01). To function

correctly both sides must see the complete assert/de-assert cycle (01 and 10). The

requesting device should not initiate a subsequent request until the cycle completes.

Acquisition Sequence

DataMan can be triggered to acquire images by several methods. It can be done by setting

the Trigger bit or issuing a trigger String Command. It can also be done via DMCC

PLC DataMan

Function code|Data Request

Function code|Data Response

initiate request

perform action

initiate response

receive response

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 91

Modbus TCP

command (Telnet) or hardwired trigger signal. The Trigger bit method will be discussed

here.

On startup the TriggerEnable will be False. It must be set to True to enable triggering via

the Trigger bit. When the device is ready to accept triggers, the reader will set the

TriggerReady bit to True.

While the TriggerReady bit is True, each time the reader detects the Trigger bit change

from 01, it will initiate a read. The Trigger bit should be held in the new state until that

same state value is seen in the TriggerAck bit (this is a necessary handshake to guarantee

that the trigger is seen by the reader).

During an acquisition, the TriggerReady bit will be cleared and the Acquiring bit will be set

to True. When the acquisition is completed, the Acquiring bit will be cleared. When the

device is ready to begin another image acquisition, the TriggerReady bit will again be set to

True.

If results buffering is enabled, the reader will allow overlapped acquisition and decoding

operations. TriggerReady will be set high after acquisition is complete but while decoding is

still in process. This can be used to achieve faster overall trigger rates. If result buffering is

not enabled, the TriggerReady bit will remain low until both the acquisition and decode

operations have completed.

To force a reset of the trigger mechanism set the TriggerEnable to False until TriggerReady

is also set to False. Then, TriggerEnable can be set to True to re-enable acquisition.

As a special case, an acquisition can be cancelled by clearing the Trigger signal before the

read operation has completed. This allows for the cancellation of reads in Presentation and

Manual mode if no code is in the field of view. To ensure that a read is not unintentionally

cancelled, it is advised that the PLC hold the Trigger signal True until both TriggerAck and

ResultsAvailable are True (or DecodeComplete toggles state).

Decode / Result Sequence

After an image is acquired, it is decoded. While being decoded, the Decoding bit is set.

When the decode operation has completed, the Decoding bit is cleared. The

ResultsBufferEnable determines how decode results are handled by the reader.

If ResultsBufferEnable is set to False, then the read results are immediately placed into the

Output Data block, ResultsAvailable is set to True and DecodeComplete is toggled.

1

Trigger EN

Trigger Ready

Trigger

Trigger Ack

Acquiring

Missed Acq

2

1

1

1

2

2

2

M

M

M

3

3

3

3

Acquisition #1 Acquisition #2 Acquisition #3 Missed Acq

 PLC

 DataMan

1

1

1

1

2

 2

 2

 2

M

 M

M

3

3

3

3

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 92

Modbus TCP

If ResultsBufferEnable is set to True, the new results are queued in a buffer and

DecodeComplete is toggled. The earlier read results remain in the Output Data block until

they are acknowledged by the PLC. After the acknowledgment handshake, if there are

more results in the queue, the next set of results will be placed in the Output Data block

and ResultsAvailable is set to True.

Results Buffering

There is an option to enable a queue for read results. If enabled, this allows a finite number

of sets of result data to be queued up until the PLC has time to read them. This is useful to

smooth out data flow if the PLC slows down for short periods of time.

Also, if result buffering is enabled the reader will allow overlapped acquisition and decode

operations. Depending on the application this can be used to achieve faster overall trigger

rates. See the Acquisition Sequence description for further details.

In general, if reads are occurring faster than results can be transferred to the PLC, some

data will be lost. The primary difference between buffering or not buffering determines

which results get discarded. If buffering is not enabled, the most recent results are kept

and the earlier result (which was not read by the PLC quickly enough) is lost. The more

recent result will overwrite the earlier result. If buffering is enabled (and the queue

becomes full) the most recent results are discarded until room becomes available in the

results queue.

SoftEvents

SoftEvents act as “virtual” inputs. When the value of a SoftEvent bit changes from 0 1

the action associated with the event will be executed. When the action completes, the

corresponding SoftEventAck bit will change from 0 1 to signal completion.

1

Decoding

Trigger Ready

Trigger

Trigger Ack

Acquiring

Decode Cmplt

2

1

1

1

2

2

1

Read #1
Read #2

1 2

2

2 Results Avail

Results Ack 1

1

h

t

t

p

:

/

/

w

w

w

.

f

a

c

e

b

o

o

k

.

c

o

m

/

a

l

b

u

m

.

p

h

p

?

a

i

d

=

2

7

PLC

DataMan

1 2

1

1

1

1

1

1

1

 2

 2

 2

 2

 2

 2

 2

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 93

Modbus TCP

The SoftEvent and SoftEventAck form a logical handshake. After SoftEventAck changes to

1, the original SoftEvent should be set back to 0. When that occurs, SoftEventAck will

automatically be set back to 0.

NOTE

Do not execute soft events that change the reader configuration at the same time that

reads are being triggered. Changing configuration during acquisition/decode can lead to

unpredictable results.

The “ExecuteDMCC” and “SetMatchString” soft event actions require user supplied data.

This data must be written to the UserData and UserDataLength area of the Input Data

block prior to invoking the soft event. Since both of these soft events depend on the

UserData, only one may be invoked at a time.

String Commands

The DataMan MC Protocol implementation includes a String Command feature. This feature

allows you to execute string-based DMCC commands. The DMCC command is sent to the

reader via the String Command block. The DMCC command result is returned via the String

Command Result block. Initiating a command and notification of completion is

accomplished by signaling bits in the Control and Status blocks.

To execute a DMCC command, the command string is placed in the data field of the String

Command block. The command string consists of standard ASCII text. The command

format is exactly the same as would be used for a serial (RS-232) or Telnet connection.

The string does not need to be terminated with a null character. Instead, the length of the

string (that is, the number of ASCII characters) is placed in the length field of the String

Command block.

After executing the DMCC command, the result string is returned in the String Command

Result block. Similar to the original command, the result string consists of ASCII characters

in the same format as would be returned via serial or Telnet. Also, there is no terminating

null character. Instead, the length of the result is returned in the Command String Result

length field. The Command String Result block also contains a numeric result code. This

allows you to determine the success or failure of the command without having to parse the

text string. The values of the result code are defined in the DMCC documentation.

General Fault Indicator

When a communication-related fault occurs, the “GeneralFault” bit will change from 0 1.

Currently the only fault conditions supported are soft event operations. If a soft event

operation fails, the fault bit will be set. The fault bit will remain set until the next successful

soft event operation, or, until TriggerEnable is set to 0 and then back to 1.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 94

Modbus TCP

Examples
Included with the Setup Tool installer are two example PLC programs created with CoDeSys

v2.3 software. These samples are designed and tested on a Wago 750-841 PLC. These

simple programs clearly demonstrate DataMan ID readers‟ capabilities and proper

operation. The same operations can be achieved by using more advanced features and

efficient programming practices with Wago PLCs.

However, such an advanced program is less useful for demonstration purposes. The

examples try to show different approaches in the techniques used for the communication to

the DataMan reader.

NOTE

All examples are designed to work only if the “Control” datablock is mapped to the Coil

space and the “Status” datablock is mapped to the Discrete Input space.

ApplicationLayer Example

This sample realizes a generic data transfer between the DataMan reader and the PLC.

Memory areas of the “Control”, “Status” and “Output Area” are cloned in the PLC and

synchronized as needed or cyclically. Each data area is synchronized with its own instance

of “ETHERNETMODBUSMASTER_TCP”. This causes 3 TCP connections to be open

simultaneously. Make sure that the Modbus TCP related setting “Maximum Connections” on

the DataMan reader is set to at least 3 for this example to work.

Function

The example application demonstrates the following operations:

1. Transfer the 32-bit “Control” register data from the PLC to the reader.

2. Transfer the 32-bit “Status” register data from the reader to the PLC.

3. Transfer “Output Data” from the reader to the PLC.

All actions are started when there is a connection to the reader.

Transferring “Control” Register Data

All data gets transferred when there is a change in the local PLC data. The local PLC data

can be manipulated in the visualization.

SoftEvent

cycle #1

SoftEvent cycle #2

(failure occured)

SoftEvent

cycle #3

SoftEvent

SoftEventAck

GeneralFault

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 95

Modbus TCP

NOTE

No synchronization is implemented from the reader to the PLC, so the local PLC data might

be incorrect after building up the connection or if another Modbus TCP client manipulates

the Contol register simultaneously. There is a timeout setting that can lead to a disconnect

if you do not manipulate the “Control” register during this timeframe.

Transferring Status Register Data

All data gets transferred cyclically. The poll interval can be specified in the visualization.

Transferring Output Data

All data gets transferred cyclically. The poll interval can be specified in the visualization.

DataManControl Example

This sample shows in a sequential manner the steps to do to achieve one of the functions

named in the following subsection. To outline this chronological sequence “Sequential

Function Chart” was chosen as programming language.

Function

The example application demonstrates the following operations:

1. Triggering a read

2. Getting read results

3. Executing string commands (DMCC)

4. Executing soft event operations

a. Train code

b. Train match string

c. Train focus

d. Train brightness

e. Untrain

f. Execute DMCC

g. Set match string

The “Main” program contains variables to invoke each of these operations. The operation is

invoked by toggling the control bool directly or from the visualization (red=0, green=1)

from 0 1. This will invoke the associated subroutine to perform the operation. When the

operation 4 is complete, the subroutine will set the control bit back to 0.

Triggering a Read

The example provides a “Continuous Trigger”. As the name implies, enabling the “xTrigger”

bit will invoke a continuous series of read operations. Once enabled, the “xTrigger” control

bit will remain set until you disable it.

Primarily, the trigger subroutine manages the trigger handshake operation between the

PLC and the reader. The control Result Ack and Trigger bits are reset, the Trigger Enable

bit is set, the PLC waits for the corresponding TriggerReady status bit from the reader, and

the control Trigger bit is set. Refer to a description of handshaking in Section Operation.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 96

Modbus TCP

Getting Read Results

For this example the operation of triggering a read and getting read results was

intentionally separated. This is to support the situation where the PLC is not the source of

the read trigger. For example, the reader may be configured to use a hardware trigger. In

such a case, only the get results subroutine would be needed.

Like the triggering subroutine, the get results subroutine manages the results handshake

operation between the PLC and the reader. The routine waits for the ResultsAvailable

status bit to become active, it copies the result data to internal storage, and then executes

the ResultsAck handshake. Refer to a description of handshaking in Section Operation.

The read result consists of a ResultCode, ResultLength, and ResultData. Refer to Section

Output Data Block Field Descriptions for details of the ResultCode values. The ResultLength

field indicates how many bytes of actual result data exist in the ResultData field. The

subroutine converts this byte length to word length before copying the results to internal

storage.

Execute String Commands (DMCC)

The string command feature provides a simple way to invoke DMCC commands from the

PLC. The command format and command result format is exactly identical to that used for

serial or Telnet DMCC operation.

This subroutine copies an example DMCC command (||>GET DEVICE.TYPE) to the String

Command block and then manages the string command handshake operation between the

PLC and the reader to invoke the command and retrieve the command result. Any valid

DMCC command may be invoked with this mechanism. Refer to the DataMan Command

Reference document available through the Windows Start menu.

Execute Soft Events

Soft Events are used to invoke a predefined action. Each Soft Event is essentially a virtual

input signal. Each of the soft event subroutines manages the handshake operation between

the PLC and the reader to invoke the predefined action. The associated action is invoked

when the SoftEvent bit toggles from 0 1. The subroutine then watches for the associated

SoftEventAck bit from the reader which signals that the action is complete. For a

description of handshaking, see Section Operation.

NOTE

The “Execute DMCC” and “Set Match String” soft events make use of the Input Data block.

The subroutine for these two events copies the relevant data into the User Data fields of

the Input Data block and then invokes the User Data subroutine to transfer the data to the

reader. Only after the user data is transferred is the actual soft event action invoked. It is

required that the user data be transferred before invoking either of these events.

NOTE

The “Train Match String” soft event only prepares the training mechanism. The actual

training occurs on the next read operation. Therefore, a trigger must be issued following

“Train Match String”.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 97

PROFINET

PROFINET
PROFINET is an application-level protocol used in industrial automation applications. This

protocol uses standard Ethernet hardware and software to exchange I/O data, alarms, and

diagnostics.

DataMan supports PROFINET I/O. This is one of the 2 “views” contained in the PROFINET

communication standard. PROFINET I/O performs cyclic data transfers to exchange data

with Programmable Logic Controllers (PLCs) over Ethernet. The second “view” in the

standard, PROFINET CBA (Component Based Automation), is not supported.

A deliberate effort has been made to make the DataMan PROFINET communication model

closely match the Cognex In-Sight family. Customers with In-Sight experience should find

working with DataMan familiar and comfortable.

By default, the DataMan has the PROFINET protocol disabled. The protocol can be enabled

via DMCC, scanning a parameter code or in the Setup Tool.

DMCC
The following commands can be used to enable/disable PROFINET. The commands can be

issued via RS-232 or Telnet connection.

NOTE

Because you have to make changes to the Telnet client provided by Windows to

communicate with DataMan, it is recommended you use third party clients such as PuTTY.

Enable:

||>SET PROFINET.ENABLED ON

||>CONFIG.SAVE

||>REBOOT

Disable:

||>SET PROFINET.ENABLED OFF

||>CONFIG.SAVE

||>REBOOT

Reader Configuration Code
Scanning the following reader configuration codes will enable/disable PROFINET.

NOTE

You must reboot the device for the change to take effect.

Enable: Disable: Reboot:

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 98

PROFINET

Setup Tool
The PROFINET protocol can be enabled by checking Enabled on the Industrial Protocols

pane‟s PROFINET tab.

Make sure you save the new selection by clicking Yes to the Reboot Required message

window.

NOTE

You must reboot your reader for the new settings to take effect.

Getting Started
Preparing to use PROFINET involves the following main steps:

 Make sure you have the Siemens Step 7 programming software (SIMATIC) installed.

 Set up the Siemens Software tool so that it recognizes your DataMan device.

Install the Generic Station Description (GSD) file.

Perform the following steps to set up PROFINET:

1. Verify that SIMATIC is on your machine.

2. From the Windows Start menu, launch the SIMATIC Manager.

3. If you already have a project, select “Cancel” to skip past the New Project wizard.

Otherwise, let the wizard guide you through creating a new project.

4. Once the Manager has opened the project, double-click on the “Hardware” icon to

open the “HW Config” dialog screen. From the main menu, select “OptionsInstall

GSD File…”.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 99

PROFINET

5. Browse to the location where the GSD file was installed (or the location where you

saved the GSD file if it was downloaded from the web).

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 100

PROFINET

6. Select the GSD file you wish to install and follow the displayed instructions to complete

the installation.

NOTE

There may be more than one GSD file in the list. If you are unsure which to install,

choose the one with the most recent date.

7. Add your DataMan device to your project. This makes the DataMan available in the

Hardware Catalog. Launch the SIMATIC Hardware Config tool.

8. In the main menu, select View Catalog.

9. The catalog is displayed. Expand the “PROFINET IO” tree to the “Cognex ID Readers”

node.

10. With the left mouse button, drag the DataMan reader over and drop it on the

PROFINET IO network symbol in the left pane.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 101

PROFINET

The HW Config tool automatically maps the DataMan I/O modules into the memory

space.

NOTE

By default, the 64 byte User Data and 64 byte Result Data Modules are inserted. There

are multiple sizes available for both of these modules. To optimize performance use

the module size that most closely matches the actual data requirements of your

application. You can change the module simply by deleting the one in the table and

inserting the appropriate sized module from the catalog.

11. Right-click on the DataMan icon and select “Object Properties…”.

12. Give the reader a name. This must match the name of your actual DataMan reader.

The name must be unique and conform to DNS naming conventions. Refer to the

SIMATIC Software help for details.

13. If your DataMan reader is configured to use its own static IP, uncheck the “Assign IP

address via IO controller” box. Otherwise if you wish the PLC to assign an IP address,

select the Ethernet button and configure the appropriate address.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 102

PROFINET

14. In the “IO Cycle” tab, select the appropriate cyclic update rate for your application.

15. By default, the SIMATIC software maps the User Data & Result Data Modules to offset

256. This is outside of the default process image area size of 128. That is, by default,

data in these modules are inaccessible by some SFCs such as BLKMOV. As a solution,

either remap the modules to lower offsets within the process image area or expand

the process image area to include these modules.

If you choose to expand the process image area, make the size large enough for the

module size plus the default 256 offset.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 103

PROFINET

NOTE

Expanding the process image can have a performance impact on the PLC scan cycle time. If

your scan time is critical, use the minimal acceptable module sizes and manually remap

them down lower in the process image.

Modules
The PROFINET implementation on DataMan consists of seven I/O modules.

1. Acquisition Control Module

2. Acquisition Status Module

3. Results Control Module

4. Results Status Module

5. Soft Event Control Module

6. User Data Module

7. Result Data Module

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 104

PROFINET

Acquisition Control Module

Controls image acquisition. This module consists of data sent from the PLC to the DataMan

device.

Slot number: 1

Total Module size: 1 byte

Bit Name Description

0 Trigger Enable Setting this bit enables triggering via PROFINET. Clearing

this bit disables triggering.

1 Trigger

Setting this bit triggers an acquisition when the following

conditions are met:

 Trigger Enable is set

 No acquisition is currently in progress

 The device is ready to trigger

2 – 7 Reserved Reserved for future use

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 105

PROFINET

Acquisition Status Module

Indicates the current acquisition status. This module consists of data sent from the

DataMan device to the PLC.

Slot number: 2

Total Module size: 3 bytes

Bit Name Description

0 Trigger Ready
Indicates when the device is ready to accept a new trigger.

Bit is True when “Trigger Enable” has been set and the

device is ready to accept a new trigger.

1 Trigger Ack
Indicates that the DataMan has received a new Trigger.

This bit will remain True as long as the “Trigger” bit

remains True (that is, it is interlocked with the Trigger bit).

2 Acquiring Indicates that the DataMan is currently acquiring an image.

3 Missed Ack

Indicates that the DataMan was unable to successfully

trigger an acquisition. Bit is cleared when the next

successful acquisition occurs.

4 – 7 Reserved Reserved for future use

8–23 Trigger ID

ID value of the next trigger to be issued (16-bit integer).

Used to match issued triggers with corresponding result

data received later. This same value will be returned in

ResultID of the result data.

Results Control Module

Controls the processing of result data. This module consists of data is sent from the PLC to

the DataMan device.

Slot number: 3

Total Module size: 1 byte

Bit Name Description

0 Results Buffer Enable

Enables queuing of “Result Data”. If enabled, the current

result data will remain until acknowledged (even if new

results arrive). New results are queued. The next set of

results are pulled from the queue (made available in the

Result Data module) each time the current results are

acknowledged. The DataMan will respond to the

acknowledge by clearing the “Results Available” bit. Once

the “Results Ack” bit is cleared the next set of read results

will be posted and “Results Available” will be set True. If

results buffering is not enabled newly received read results

will simply overwrite the content of the Result Data

module.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 106

PROFINET

Bit Name Description

1 Results Ack

Bit is used to acknowledge that the PLC has successfully

read the latest result data. When set True the “Result

Available” bit will be cleared. If result buffering is enabled,

the next set of result data will be pulled from the queue

and “Result Available” will again be set True.

2 – 7 Reserved Reserved for future use

Results Status Module

Indicates the acquisition and result status. This module consists of data sent from the

DataMan device to the PLC.

Slot number: 4

Total Module size: 1 byte

Bit Name Description

0 Decoding Indicates that the DataMan is decoding an acquired image.

1 Decode Complete Bit is toggled on the completion of a decode operation when

the new results are made available (01 or 10).

2 Result Buffer Overrun

Indicates that the DataMan has discarded a set of read

results because the results queue is full. Cleared when the

next set of results are successfully queued.

3 Results Available

Indicates that a new set of read results are available (i.e.

the contents of the Result Data module are valid). Cleared

when the results are acknowledged.

4 – 6 Reserved Reserved for future use

7 General Fault
Indicates that a fault has occurred (i.e. Soft Event “Set

Match String” or “Execute DMCC” error has occurred).

Soft Event Control Module

Used to initiate a Soft Event and receive acknowledgment of completion. Note, this is a bi-

directional I/O module. Module data sent from the PLC initiates the Soft Event. Module data

sent by the DataMan device acknowledges completion.

Slot number: 5

Total Module size: 1 byte (input) and 1 byte (output)

Data written from the PLC to DataMan:

Bit Name Description

0 Train Code
Bit transition from 01 will cause the train code operation

to be invoked.

1 Train Match String
Bit transition from 01 will cause the train match string

operation to be invoked.

2 Train Focus
Bit transition from 01 will cause the train focus operation

to be invoked.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 107

PROFINET

Bit Name Description

3 Train Brightness
Bit transition from 01 will cause the train brightness

operation to be invoked.

4 Untrain
Bit transition from 01 will cause the untrain operation to

be invoked.

5 Reserved Reserved for future use

6 Execute DMCC

Bit transition from 01 will cause the DMCC operation to be

invoked. Note that a valid DMCC command string must first

be placed in “User Data” before invoking this event.

7 Set Match String

Bit transition from 01 will cause the set match string

operation to be invoked. Note that match string data must

first be placed in “User Data” before invoking this event.

Data written from the DataMan to PLC:

Bit Name Description

0 Train Code Ack Indicates that the “Train Code” operation has completed

1 Train Match String Ack
Indicates that the “Train Match String” operation has

completed

2 Train Focus Ack Indicates that the “Train Focus” operation has completed

3 Train Brightness Ack
Indicates that the “Train Brightness” operation has

completed

4 Untrain Ack Indicates that the “Untrain” operation has completed

5 Reserved Reserved for future use

6 Execute DMCC Ack Indicates that the “Execute DMCC” operation has completed

7 Set Match String Ack
Indicates that the “Set Match String” operation has

completed

User Data Module

Data sent from a PLC to a DataMan to support acquisition, decode and other special

operations. Currently this module is only used to support the “Execute DMCC” and “Set

Match String” soft events.

Note, there are actually 5 versions of the User Data module. Only one instance can be

configured for use in a given application. The “User Data Option” and “User Data Length”

fields are the same for each module. The “User Data” field varies in size based on the

selected module. Choose the module which is large enough to exchange the amount of

data required by your application.

Slot number: 6

Total Module size: 4 + 16 (16 bytes of User Data)

 4 + 32 (32 bytes of User Data)

 4 + 64 (64 bytes of User Data)

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 108

PROFINET

 4 + 128 (128 bytes of User Data)

 4 + 250 (250 bytes of User Data)

Byte Name Description

0 - 1 User Data Option

Currently only used by “Set Match String” soft event.

Specifies which code target to assign the string (16-bit

Integer).

0, assign string to all targets

1, assign string to 2D codes

2, assign string to QR codes

3, assign string to 1D / stacked / postal codes

2 - 3 User Data Length Number of bytes of valid data actually contained in the

“User Data” field (16-bit Integer).

4 … User Data

Data sent from the PLC to the DataMan to support

acquisition, decode and other special operations (array of

bytes).

Result Data Module

Read result data sent from a DataMan to a PLC.

NOTE

There are actually 5 versions of the Result Data module. Only a single instance can be

configured for use in a given application. The “Result ID”, “Result Code”, “Result Extended”

and “Result Length” fields are the same for each module. The “Result Data” field varies in

size based on the selected module. Choose the module which is large enough to exchange

the amount of result data required by your application.

Slot number: 7

Total Module size: 8 + 16 (16 bytes of Result Data)

 8 + 32 (32 bytes of Result Data)

 8 + 64 (64 bytes of Result Data)

 8 + 128 (128 bytes of Result Data)

 8 + 246 (246 bytes of Result Data)

Byte Name Description

0 - 1 Result ID
The value of the “Trigger ID” when the trigger that

generated these results was issued. Used to match up

triggers with corresponding result data (16-bit Integer).

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 109

PROFINET

Byte Name Description

2 - 3 Result Code

Indicates the success or failure of the read that produced

these results (16-bit Integer).

Bit 0,1=read, 0=no read

Bit 1,1=validated, 0=not validated (or validation not in use)

Bit 2,1=verified, 0=not verified (or verification not in use)

Bit 3,1=acquisition trigger overrun

Bit 4,1=acquisition buffer overflow

Bits 5-15 reserved

4 - 5 Result Extended Currently unused (16-bit Integer).

6 - 7 Result Length
Actual number of bytes of read data contained in the

“Result Data” field (16-bit Integer).

8 … Result Data Decoded read result data (array of bytes)

Operation

SoftEvents

SoftEvents act as “virtual” inputs. When the value of a SoftEvent changes from 0 1 the

action associated with the event will be executed. When the action completes the

corresponding SoftEventAck bit will change from 0 1 to signal completion. The

acknowledge bit will change back to 0 when the corresponding SoftEvent bit is set back to

0.

The “ExecuteDMCC” and “SetMatchString” soft event actions require user supplied data.

This data must be written to the UserData & UserDataLength area of the UserData Module

prior to invoking the soft event. Since both of these soft events depend on the UserData,

only one may be invoked at a time.

General Fault Indicator

When a communication related fault occurs the “GeneralFault” bit will change from 0 1.

Currently the only fault conditions supported are soft event operations. If a soft event

operation fails, the fault bit will be set. The fault bit will remain set until the next soft event

operation or until triggering is disabled and again re-enabled.

SoftEvent

cycle #1

SoftEvent cycle #2

(failure occured)

SoftEvent

cycle #3

SoftEvent

SoftEventAck

GeneralFault

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 110

PROFINET

Acquisition Sequence

DataMan can be triggered to acquire images by several methods. It can be done explicitly

by manipulating the Trigger bit of the Acquisition Control Module, it can be triggered by

external hard wired input, and finally it can be triggered via DMCC command. Manipulating

the Acquisition Control Module bits will be discussed here.

On startup the “Trigger Enable” bit will be False. It must be set to True to enable

triggering. When the device is ready to accept triggers, the “Trigger Ready” bit will be set

to True.

While the Trigger Ready bit is True, each time the reader sees the “Trigger” bit change

from 0 to 1, it will initiate an image acquisition. The client (PLC) should hold the bit in the

new state until that same state value is seen back in the Trigger Ack bit (this is a necessary

handshake to guarantee that the change is seen by the reader).

During an acquisition, the Trigger Ready bit will be cleared and the Acquiring bit will be set

to True. When the acquisition is completed, the Acquiring bit will be cleared. The Trigger

Ready bit will again be set True once the device is ready to begin a new image acquisition.

If results buffering is enabled, the device will allow overlapped acquisition and decoding

operations. Trigger Ready will be set high after acquisition is complete but while decoding

is still in process. This can be used to achieve faster overall trigger rates. If result buffering

is not enabled, the Trigger Ready bit will remain low until both the acquisition and decode

operations have completed.

To force a reset of the trigger mechanism set the Trigger Enable bit to False, until the

Trigger Ready bit is 0. Then, Trigger Enable can be set to True to re-enable acquisition.

As a special case, an acquisition can be cancelled by clearing the Trigger signal before the

read operation has completed. This allows for the cancellation of reads in Presentation and

Manual mode if no code is in the field of view. To ensure that a read is not unintentionally

cancelled, it is advised that the PLC hold the Trigger signal True until both TriggerAck and

ResultsAvailable are True (or DecodeComplete toggles state).

1

Trigger EN

Trigger Ready

Trigger

Trigger Ack

Acquiring

Missed Acq

2

1

1

1

2

2

2

M

M

M

3

3

3

3

Acquisition #1 Acquisition #2 Acquisition #3 Missed Acq

Client

DataMan

1

1

1

2

 2

 2

 2

M

 M

M

3

3

3

3

1

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 111

PROFINET

Decode / Result Sequence

After an image is acquired it is decoded. While being decoded, the “Decoding” bit of the

Result Status Module is set. When decode is complete, the Decoding bit is cleared and the

“Decode Complete” bit is toggled.

The “Results Buffer Enable” bit determines how decode results are handled by the reader.

If the Results Buffer Enable bit is set to False, then the decode results are immediately

placed into the Results Module and Results Available is set to True.

If the Results Buffer Enable bit is set to True the new results are queued. The earlier

decode results remain in the Results Module until they are acknowledged by the client by

setting the “Results Ack” bit to True. After the Results Available bit is cleared, the client

should set the Results Ack bit back to False to allow the next queued results to be placed in

to the Results Module. This is a necessary handshake to ensure the results are received by

the DataMan client (PLC).

Behavior of DecodeStatusRegister

Bit Bit Name Results if Buffering Disabled Results if Buffering Enabled

1 Decoding
Set when decoding an

image.
Set when decoding an image.

2 Decode Complete
Toggled on completion of an

image decode.

Toggled on completion of an

image decode.

3
Results Buffer

Overflow
Remains set to zero.

Set when decode results

could not be queued because

the client failed to

acknowledge a previous

result. Cleared when the

decode result is successfully

queued.

4 Results Available

Set when new results are

placed in the Results Module.

Stays set until the results

are acknowledged by setting

Results Ack to true.

Set when new results are

placed in the Results Module.

Stays set until the results are

acknowledged by setting

Results Ack to true.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 112

PROFINET

Results Buffering

There is an option to enable a queue for decode results. If enabled this allows a finite

number of decode result data to queue up until the client (PLC) has time to read them. This

is useful to smooth out data flow if the client (PLC) slows down for short periods of time or

if there are surges of read activity.

Also, if result buffering is enabled the device will allow overlapped acquisition and decode

operations. Depending on the application this can be used to achieve faster over all trigger

rates. See Acquisition Sequence description above for further detail.

In general, if reads are occurring faster than results can be sent out, the primary difference

between buffering or not buffering is determining which results get discarded. If buffering

is not enabled the most recent results are kept and the earlier result (which was not read

by the PLC fast enough) is lost. Essentially the more recent result will simply over write the

earlier result. If buffering is enabled (and the queue becomes full) the most recent results

are discarded until room becomes available in the results queue.

Siemens Examples
This section gives some examples of using the DataMan with a Siemens S7-300 PLC. It is

assumed that the reader is familiar with the S7-300 and the SIMATIC programming

software.

Symbol Table

Although not required, defining symbols for the DataMan I/O module elements can be

extremely helpful. It makes the code much easier to read and reduces mistakes. This

sample table shows symbols defined for a typical instance of a DataMan reader. Note,

1

Decoding

Trigger

Ready

Trigger

Trigger

Ack

Acquiring

Decode

Cmplt

2

1

1

1

2

2

1

Read #1
Read #2

1 2

2

2 Results

Avail

Results

Ack
1

1

h

t

t

p

:

/

/

w

w

w

.

f

a

c

e

b

o

o

k

.

c

o

m

/

a

l

b

u

m

.

p

h

p

?

a

i

d

=

2

7

8

6

2

Client

DataMan

1 2

1

1

1

1

1

1

1

 2

 2

 2

 2

 2

 2

 2

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 113

PROFINET

DataMan I/O modules may be at different addresses in your project. Make sure to adjust

your symbol definitions based on the specific offsets of the I/O modules.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 114

PROFINET

Trigger and Get Results

Run the sample program “DM200_SampleRead” for the complete example program.

NOTE

This sample can be used with any PROFINET enabled DataMan reader.

Perform the following steps to install the program:

1. Start the SIMATIC Manager software.

2. Close any open applications.

3. From the main menu, select File Retrieve…

4. Browse to find the sample file on your PC.

5. Look for the Siemens folder and select the zip file.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 115

PROFINET

6. Select a destination directory to save the project on your PC.

7. The Siemens software extracts the sample archive and makes it available.

8. Reduced to the basics the process of reading and retrieving results consists of the

following:

9. Define an area in your application to save read results. There are many options

regarding how and where result data can be stored. For our example we define a Data

Block (DB) which contains the fields of the Result Data module that we are interested

in for our application.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 116

PROFINET

10. Enable the reader

11. Set the trigger signal and set semaphore to indicate a read is pending.

12. As soon as the trigger signal is acknowledged, clear the trigger signal.

13. As soon as the results are available save a copy of the result data and set the results

acknowledge signal.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 117

PROFINET

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 118

PROFINET

14. When the reader sees the result acknowledge signal clear result acknowledge, clear

the read pending semaphore, and signal that the read process has completed.

NOTE

The reader clears “Results Available” as soon as it sees the PLC‟s “Results Ack” signal.

Using Soft Events

Run the sample program “DM200_SoftEvents” for the complete example program.

NOTE

This sample can be used with any PROFINET enabled DataMan reader.

Perform the following steps to install the program:

1. Start the SIMATIC Manager software.

2. Close any open applications.

3. From the main menu, select File Retrieve…

4. Browse to find the sample file on your PC.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 119

PROFINET

5. Look for the Siemens folder and select Dm200_SoftEvents.zip.

6. Select a destination directory to save the project on your PC.

7. The Siemens software extracts the sample archive and makes it available.

Soft events are a means of invoking an activity by simply manipulating a single control bit.

The activity for each bit is predefined (for more details, see Section SoftEvents). With the

exception of “Execute DMCC” and “Set Match String” all soft events may be invoked in the

same way. “Execute DMCC” and “Set Match String” require the added step of loading the

User Data module with application data before invoking the event.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 120

PROFINET

Reduced to the basics the process of invoking a Soft Event consists of the following:

Executing DMCC Commands

Refer to sample program “DM200_SoftEvents” for the complete example program (for

information on how to install it, see Section Using Soft Events).

NOTE

This sample can be used with any PROFINET enabled DataMan reader.

“Execute DMCC” is a Soft Event which requires the added step of loading the User Data

module with the desired DMCC command string before invoking the event. Note, the Soft

Event mechanism does not provide a means of returning DMCC response data (other than

a failure indication). So this mechanism cannot be used for DMCC “||>GET…” commands.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 121

PROFINET

The process of executing a DMCC command is the same as that for all other Soft Events

(see example above) except the step of invoking the Soft Event also includes copying the

command string to the User Data Module. In this example the command string is exists in a

Data Block. This example could be expanded to utilize a Data Block with an array of

command strings that the copy function could reference by an index value. That would

allow the user to pre-define all DMCC commands that are required by the application and

invoke them simply by index.

The function “Set User Data” (FC11) simply copies the provided string to the User Data

module. Refer to the example program for the actual STL code.

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 122

DataMan Application Development

DataMan Application Development
DataMan Control Commands (DMCC) are a method of configuring and controlling a

DataMan reader from a COM port or through an Ethernet connection, either directly or

programmatically through a custom application.

For a complete list of DMCC commands, click the Windows Start menu and

browse to Cognex DataMan Setup Tool v x.x Documentation Command
Reference.

DMCC Overview
Depending on the DataMan reader you are using, the COM port connection can be either

RS232 or USB and an Ethernet connection can be established through the Telnet protocol.

By default, the DataMan reader is configured to communicate over TCP port number 23,

but you can use the Setup Tool to assign a different port number as necessary.

Command Syntax
All DMCC commands are formed of a stream of ASCII printable characters with the

following syntax:

command-header command [arguments] footer

For example:

||>trigger on\CR\LF

Command Header Syntax

||checksum:command-id>

All options are colon separated ASCII text. A header without the header-option block will

use header defaults.

checksum

0: no checksum (default)

1: last byte before footer is XOR of bytes

command-id

An integer command sequence that can be reported back in acknowledgement.

Header Examples

Example Description

||> Default Header

||0:123> Header indicating no-checksum and ID of 123

||1> Header indicating checksum after command and data.

Command

The command is an ASCII typable string possibly followed by data. All command names

and public parameters data are case insensitive. Only a single command may be issued

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 123

DataMan Application Development

within a header-footer block. Commands, parameters and arguments are separated by a

space character.

Commands

Short names specifying an action. A commonly used command is GET or SET followed by a

Parameter and Value.

Parameters

Short names specifying a device setting. Parameter names are organized with a group of

similar commands with one level of structural organization separated by a period ('.').

Arguments

Boolean: ON or OFF

Integer: 123456

String: ASCII text string enclosed by quotes (“).The string content is passed to a function

to translate the string to the final format. The following characters must be backslash

escaped: quote (\”), backslash (\\), pipe (\|), tab (\t), CR(\r), LF (\n).

Footer

The footer is a carriage return and linefeed (noted as \CR\LF or \r\n).

Reader Response

The reader will have one of several response formats. The choice of response format is

configured using the SET COM.DMCC-RESPONSE command.

Silent: (0, Default) No response will be sent from the reader. Invalid commands are

ignored without feedback. Command responses are sent in space delimited ASCII text

without a header or footer.

Extended: (1) The reader responds with a header data footer block similar to the

command format.

NOTE

While the reader can process a stream of DMCC commands, it is typically more robust to

either wait for a response, or insert a delay between consecutive commands.

||checksum:command-id[status]

checksum

The response uses the same checksum format as the command sent to the reader.

0: no checksum

1: last byte before footer is XOR of bytes

command-id

The command-id sent to the reader is returned in the response header.

status

An integer in ASCII text format.

0: no error

1: reader initiated read-string

100: unidentified error

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 124

DataMan Application Development

101: command invalid

102: parameter invalid

103: checksum incorrect

104: parameter rejected/altered due to reader state

Examples

Command Silent
Response

Extended Response Description

||>GET

SYMBOL.DATAMATRIX\r\n
ON ||[0]ON\r\n Is the DataMatrix

symbology
enabled?

||>SET SYMBOL.DATAMATRIX

ON\r\n
no response ||[0]\r\n Enable the

DataMatrix
symbology.

||>TRIGGER ON\r\n decoded data
or no-read
response

||[0]\r\n

||[1]decoded data

or no-read response

in base64\r\n

Trigger
Command

DMCC Application Development
You can use DMCCs as an application programming interface for integrating a reader into a

larger automation system.

If you want to create your own application from scratch that you want to communicate with

the DataMan reader through the serial port, make sure you set port.DtrEnable = true, if

the port is an instance of the SerialPort class.

You can also use the DMCC .NET Software Development Kit (hereafter referred to as DMCC

.NET). The following sections give detailed information about installing DMCC .NET, its

contents, building the DMCC .NET sample code, and about the different DMCC recipes.

DMCC .NET Contents

The DMCC .NET comprises the Cognex.DataMan.SDK.dll and its documentation. In addition,

a sample application is provided in the form of a complete Microsoft Visual Studio project

(in .csproj format).

Building the DMCC .NET Sample Code

Open the Sample code in Microsoft Visual Studio and choose Build solution.

Using DMCC .NET

To use DMCC .NET for your own purposes, perform the following steps:

1. In Microsoft Visual Studio, click Create Solution/Project.

2. Under Project, right-click References and choose Add Reference…

3. In the pop-up window, click the Browse tab and look for the Cognex.DataMan.SDK.dll

file in the directory where you installed the solution.

4. Add the following lines to the beginning of your code:

DataMan® Communications and Programming Guide

12/2/2011 | Version 4.2

P a g e | 125

DataMan Application Development

using Cognex.DataMan.SDK;

using Cognex.DataMan.SDK.Events;

to find the different elements belonging to the SDK in these namespaces. They will appear

in the intellisense as seen in the following image:

Enumerating DataMan Devices

1. Create a new DataManSystemManager.

DataManSystemManager myManager = new DataManSystemManager();

2. Subscribe to its SystemDiscovered event.

myManager.SystemDiscovered += new
DataManSystemManager.SystemDiscoveredEventHandler(myManager_NetworkDeviceApp
eared);

3. Create event handler of type SystemDiscoveredEventHandler.

4. The event handler argument of type SystemDiscoveredEventArgs has a property

System of type DataManSystem. These DataManSystem objects represent readers.

You can store these DataManSystem objects in your own collection.

5. To start device discovery, call the myManager.Refresh() method.

NOTE

The SystemDiscovered event will be fired every time a device is detected.

Connecting to a DataMan Device

Connect to your device by performing the following steps:

1. Create DataManSystem instance

DataManSystem mySystem = new DataManSystem();

2. Create DataManConnectionParams instance

DataManConnectionParams myParams = new DataManConnectionParams(address);

where the address is a string. This can be a COM port (for example, “COM23”) or an IP

address (for example, “10.10.123.42”).

3. Call the Connect() method of your DataManSystem instance.

DataMan Application Development

mySystem.Connect(myParams);

4. (Optional) Verify if you are connected:

if (mySystem.IsConnected())

5. To disconnect, call

mySystem.Disconnect();

NOTE

Check the events of DataManSystem. After calling Connect(), subscribe to the events that

you need. Unsubscribe before calling Disconnect().

DataMan Device Settings

Use DataManSystem.SendDmcc() for different settings. Refer to the DMCC Command

Reference available through the Windows Start menu.

There are two versions of the SendDmcc() method:

1. The SendDmcc(string) takes a string which is the DMCC including the header. This is a

non-blocking, asynchronous method for sending DMCC. This returns an ID so that you

can find the matching response in the event handler. You have to subscribe to the

appropriate events of the DataManSystem instances and handle responses in the

appropriate event handler, such as DmccResponseArrived.

2. The SendDmcc(string,int) takes a DMCC as the first argument and the second

argument is a timeout value. This is the blocking version. It will not return until a

response is received or the timeout expires (when a null response is returned). You

can retrieve the DMCC result as the return value of the SendDmcc() method.

The following is an example for sending a DMCC:

int id = mySystem.SendDmcc("||>GET DEVICE.TYPE");

Displaying Static and Live Images from a DataMan Device

To have static images displayed, use DataManSystem.GetImage() to get images.

To have live images displayed, perform the following steps:

1. Turn on live image acquisition mode by setting the

DataManSystem.Imaging.Live.Enabled to true.

2. Periodically poll the device for images by using DataManSystem.GetImage(). See an

example implementation in the source of the Sample application. In the example, a

new polling thread is created to avoid locking the GUI.

3. Turn off live image acquisition by setting the DataManSystem.Imaging.Live.Enabled to

false.

NOTE

In addition, Live Image properties, such as size, quality and format, can be controlled

through the DataManSystem.Imaging.Live properties.

Email : 2 rue René Laennec 51500 Taissy France

 Fax: 03 26 85 19 08, Tel : 03 26 82 49 29
hvssystem@hvssystem.com

Site web : www.hvssystem.com

 Distribué par :

