







 HVS
 2 rue René Laennec 51500 Taissy France
 E-mail:hvssystem@hvssystem.com

 Fax: 03 26 85 19 08, Tel : 03 26 82 49 29
 Site web : www.hvssystem.com

## 3508 and 3504 Process Controllers

| 1.     | CHAPTER 1 INSTALLATION AND OPERATION        | 10 |
|--------|---------------------------------------------|----|
| 1.1    | WHAT INSTRUMENT DO I HAVE?                  |    |
| 1.1.1  | Contents of Package                         |    |
| 1.2    | 3504 AND 3508 ORDERING CODE                 |    |
| 1.2.1  | Input and Output Modules                    |    |
| 1.3    | HOW TO INSTALL THE CONTROLLER               |    |
| 1.3.1  | Dimensions                                  |    |
| 1.3.2  | To Install the Controller                   |    |
| 1.3.3  | Unplugging the Controller                   |    |
| 1.4    | ELECTRICAL CONNECTIONS                      |    |
| 1.4.1  | Wire Sizes                                  |    |
| 1.5    | STANDARD CONNECTIONS                        |    |
| 1.5.1  | PV Input (Measuring Input)                  |    |
| 1.5.2  | Digital I/O                                 |    |
| 1.5.3  | Digital (Logic) Outputs                     |    |
| 1.5.4  | Relay Output                                |    |
| 1.5.5  | Power Supply Connections                    |    |
| 1.6    | PLUG IN I/O MODULE CONNECTIONS              |    |
| 1.6.1  | I/O Modules                                 |    |
| 1.6.2  | Zirconia Probe Construction                 |    |
| 1.6.3  | Zirconia Probe Screening Connections        |    |
| 1.7    | DIGITAL COMMUNICATIONS CONNECTIONS          |    |
| 1.7.1  | Modbus Slave (H or J Module) or EIBisynch   |    |
| 1.7.2  | Devicenet Wiring                            |    |
| 1.7.3  | Example Devicenet Wiring Diagram            |    |
| 1.7.4  | Profibus                                    |    |
| 1.7.5  | Example Profibus Wiring                     |    |
| 1.7.6  | Ethernet                                    |    |
| 1.7.7  | I/O Expander (or Additional Digital Input)  |    |
| 1.7.8  | Example Wiring Diagram                      |    |
| 1.7.9  | Snubbers                                    |    |
| 1.8    | GETTING STARTED                             |    |
| 1.9    | QUICK START - NEW CONTROLLER (UNCONFIGURED) |    |
| 1.9.1  | 10 Configure Parameters in Quick Start Mode |    |
| 1.9.2  | TO BE ENTED OLICY START MODE                |    |
| 1.10   | IO RE-ENTER QUICK START MODE                |    |
| 1.10.1 | Power up After A Full Configuration         |    |
| 1.10.2 |                                             |    |
| 1 11 1 | NORMAL OF ERATION                           |    |
| 1.11.1 | THE OPERATOR RUTTONS                        |    |
| 1.12   | Shortout Kay Pressas                        |    |
| 1.12.1 | TO SET THE REGULEED TEMPERATURE (SETPOINT)  |    |
| 1.13   | TO SET THE REQUIRED TEM ERATORE (SETTOR(1)  |    |
| 1.14   | AI ARM INDICATION                           |    |
| 1 15 1 | To Acknowledge an Alarm                     |    |
| 1.16   | MESSAGE CENTRE                              | 38 |
| 1 16 1 | Summary Pages                               |    |
| 1 16 2 | How to Edit Parameters                      | 30 |
| 1.16.3 | Programmer Summary Page                     | 40 |
| 1.16.4 | Alarm Summary Page                          | 42 |
| 1.16.5 | Alarms Setting Page                         |    |
| 1.16.6 | Control Summary Page                        | 43 |
|        |                                             |    |



| 2. |                      | CHAPTER 2 ACCESS TO FURTHER PARAMETERS                                  | 44              |
|----|----------------------|-------------------------------------------------------------------------|-----------------|
|    | 2.1.1                | Level 3                                                                 |                 |
|    | 2.1.2                | Configuration Level.                                                    |                 |
|    | 2.1.5                | ACCESS PARAMETER LIST                                                   |                 |
|    | 2.2                  | ACCESS I ARAMETER LIST                                                  |                 |
| 3. |                      | CHAPTER 3 FUNCTION BLOCKS                                               | 48              |
|    | 3.1                  | TO ACCESS A FUNCTION BLOCK                                              |                 |
|    | 3.1.1                | Sub-Lists or Instances                                                  |                 |
|    | 3.1.2                | To Change the Value of a Decemptor                                      |                 |
|    | 3.1.3                | NAVIGATION DIACRAM                                                      |                 |
|    | 5.4                  |                                                                         |                 |
| 4. |                      | CHAPTER 4 FUNCTION BLOCK WIRING                                         | 52              |
|    | 4.1                  | SOFT WIRING                                                             |                 |
|    | 4.1.1                | Wiring Example                                                          |                 |
|    | 4.1.2                | To Pomova a Wire                                                        |                 |
|    | 4.1.5                | 10 Kellove a wile                                                       |                 |
|    | 4.1.5                | Wiring Using iTools                                                     |                 |
|    | 4.1.6                | Wiring Floats with Status Information                                   |                 |
|    | 4.1.7                | Edge Wires                                                              | 59              |
|    | 4.1.8                | Operation of Booleans and Rounding                                      | 60              |
| 5  |                      | CHAPTER 5 INSTRUMENT CONFIGURATION                                      | 61              |
| 0. | 5.1                  | WHAT IS INSTRUMENT CONFIGURATION?                                       |                 |
|    | 5.2                  | TO SELECT INSTRUMENT CONFIGURATION                                      |                 |
|    | 5.3                  | TO ENABLE CONTROLLER OPTIONS                                            | 61              |
|    | 5.3.1                | Options Available in the Instrument Configuration List                  |                 |
|    | 5.4                  | DISPLAY FORMATTING                                                      |                 |
|    | 5.4.1                | To Customise the Display                                                |                 |
|    | 5.4.2                | Bar Graph (3504 Unly)                                                   |                 |
|    | 5.5<br>5.6           | INSTRUMENT DIA CNOSTICS                                                 |                 |
|    | 5.0                  |                                                                         |                 |
| 6. |                      | CHAPTER 6 PROCESS INPUT                                                 |                 |
|    | 0.1<br>6 2           | IU SELEUI YV INYUI<br>DDACESS INDIT DADAMETEDS                          |                 |
|    | <b>0.</b> 2<br>6.2.1 | Input Types and Ranges                                                  | <b>08</b><br>70 |
|    | 6.2.2                | CJC Type                                                                |                 |
|    | 6.2.3                | Display Units                                                           |                 |
|    | 6.2.4                | Sensor Break Value                                                      |                 |
|    | 6.2.5                | Fallback                                                                |                 |
|    | 6.2.6                | PV Offset                                                               |                 |
|    | 6.2.7                | PV Input Scaling                                                        |                 |
| 7. |                      | CHAPTER 7 LOGIC INPUT/OUTPUT                                            | 76              |
|    | 7.1                  | TO SELECT LOGIC IO LIST                                                 |                 |
|    | 7.2                  | LOGIC IO PARAMETERS                                                     |                 |
|    | 7.2.1                | Example: To Configure a Time Proportioning Logic Output                 |                 |
|    | 7.2.2                | Example: To Calibrate a VP Output                                       |                 |
|    | 1.2.3<br>7.2.1       | Eugle Output Scalling<br>Example: To Scale a Proportioning Logic Output |                 |
|    | 1.2.4                | Example. To Seale a Hoportioning Logic Output                           |                 |

2.

2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

Aug-04

Part No HA027988 Issue 3.0

| 8.             |                                                                                                                                                                                                                   | CHAPTER 8 AA RELAY OUTPUT                                                                                                                                                                                                                                                                                                                                                                                           | 80        |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                | 8.1                                                                                                                                                                                                               | TO SELECT AA RELAY LIST                                                                                                                                                                                                                                                                                                                                                                                             | 80        |
|                | 8.2                                                                                                                                                                                                               | AA RELAY PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                 | 80        |
|                | 8.2.1                                                                                                                                                                                                             | Example: To Wire the AA Relay to an Alarm                                                                                                                                                                                                                                                                                                                                                                           |           |
|                | 8.2.2                                                                                                                                                                                                             | Relay Output Scaling                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 0              |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                     | 02        |
| э.             | 0.1                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                     | 02 وي     |
|                | 9.1                                                                                                                                                                                                               | MODULE IDENTIFICATION                                                                                                                                                                                                                                                                                                                                                                                               | 03<br>8/1 |
|                | 9.3                                                                                                                                                                                                               | MODULE IDENTIFICATION                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                | 9.3.1                                                                                                                                                                                                             | Relay, Logic or Triac Outputs                                                                                                                                                                                                                                                                                                                                                                                       |           |
|                | 9.3.2                                                                                                                                                                                                             | Single Isolated Logic Output                                                                                                                                                                                                                                                                                                                                                                                        |           |
|                | 9.3.3                                                                                                                                                                                                             | DC Control Output or DC Retransmission                                                                                                                                                                                                                                                                                                                                                                              |           |
|                | 9.3.4                                                                                                                                                                                                             | Analogue Input                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|                | 9.3.5                                                                                                                                                                                                             | Input Types and Ranges                                                                                                                                                                                                                                                                                                                                                                                              |           |
|                | 9.3.6                                                                                                                                                                                                             | Display Units                                                                                                                                                                                                                                                                                                                                                                                                       |           |
|                | 9.3.7                                                                                                                                                                                                             | Triple Logic Input and Triple Contact Input                                                                                                                                                                                                                                                                                                                                                                         |           |
|                | 9.3.8                                                                                                                                                                                                             | Potentiometer Input                                                                                                                                                                                                                                                                                                                                                                                                 | 91        |
|                | 9.3.9                                                                                                                                                                                                             | Transmitter Power Supply                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                | 9.3.10                                                                                                                                                                                                            | Transducer Power Supply                                                                                                                                                                                                                                                                                                                                                                                             |           |
|                | 9.4                                                                                                                                                                                                               | MODULE SCALING                                                                                                                                                                                                                                                                                                                                                                                                      | 94        |
|                | 9.4.1                                                                                                                                                                                                             | Analogue Input Scaling and Offset                                                                                                                                                                                                                                                                                                                                                                                   | 94        |
|                | 9.4.2                                                                                                                                                                                                             | Relay, Logic or Triac Output Scaling                                                                                                                                                                                                                                                                                                                                                                                |           |
|                | 9.4.3                                                                                                                                                                                                             | Analogue Output Scaling                                                                                                                                                                                                                                                                                                                                                                                             |           |
|                | 9.4.4                                                                                                                                                                                                             | Potentiometer Input Scaling                                                                                                                                                                                                                                                                                                                                                                                         | 96        |
| 10             | ).                                                                                                                                                                                                                | CHAPTER 10 IO EXPANDER                                                                                                                                                                                                                                                                                                                                                                                              |           |
|                | 10.1                                                                                                                                                                                                              | TO CONFIGURE THE IO EXPANDER                                                                                                                                                                                                                                                                                                                                                                                        |           |
|                | 10.1.1                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
|                | 10.1.1                                                                                                                                                                                                            | IO Expander Parameters                                                                                                                                                                                                                                                                                                                                                                                              |           |
|                | 10.1.1                                                                                                                                                                                                            | IO Expander Parameters                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 11             | 10.1.1                                                                                                                                                                                                            | IO Expander Parameters                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 11             | 10.1.1                                                                                                                                                                                                            | IO Expander Parameters<br>CHAPTER 11 ALARMS                                                                                                                                                                                                                                                                                                                                                                         |           |
| 11             | 10.1.1<br> .<br>11.1<br>11.2                                                                                                                                                                                      | IO Expander Parameters<br>CHAPTER 11 ALARMS<br>FURTHER ALARM DEFINITIONS                                                                                                                                                                                                                                                                                                                                            |           |
| 11             | 10.1.1<br>11.1<br>11.2<br>11.2 1                                                                                                                                                                                  | IO Expander Parameters<br>CHAPTER 11 ALARMS<br>FURTHER ALARM DEFINITIONS<br>ANALOGUE ALARMS                                                                                                                                                                                                                                                                                                                         |           |
| 11             | 10.1.1<br>11.1<br>11.2<br>11.2.1<br>11.3                                                                                                                                                                          | IO Expander Parameters<br>CHAPTER 11 ALARMS<br>FURTHER ALARM DEFINITIONS<br>ANALOGUE ALARMS<br>Analogue Alarm Types<br>DIGITAL ALARMS                                                                                                                                                                                                                                                                               |           |
| 11             | 10.1.1<br>11.1<br>11.2<br>11.2.1<br>11.3<br>11.3 1                                                                                                                                                                | IO Expander Parameters<br>CHAPTER 11 ALARMS<br>FURTHER ALARM DEFINITIONS<br>ANALOGUE ALARMS<br>DIGITAL ALARMS<br>Digital Alarm Types                                                                                                                                                                                                                                                                                |           |
| 11             | 10.1.1<br>11.1<br>11.2<br>11.2.1<br>11.3<br>11.3.1<br>11.3.2                                                                                                                                                      | IO Expander Parameters<br>CHAPTER 11 ALARMS<br>FURTHER ALARM DEFINITIONS<br>ANALOGUE ALARMS<br>Analogue Alarm Types<br>DIGITAL ALARMS<br>Digital Alarm Types<br>Alarm Relay Output                                                                                                                                                                                                                                  |           |
| 11             | 10.1.1<br>11.1<br>11.2<br>11.2.1<br>11.3.1<br>11.3.2<br>11.3.3                                                                                                                                                    | IO Expander Parameters<br>CHAPTER 11 ALARMS<br>FURTHER ALARM DEFINITIONS<br>ANALOGUE ALARMS<br>Analogue Alarm Types<br>DIGITAL ALARMS<br>Digital Alarm Types<br>Alarm Relay Output<br>How Alarms are Indicated                                                                                                                                                                                                      |           |
| 11             | <b>10.1.1</b><br><b>11.1</b><br><b>11.2</b><br>11.2.1<br><b>11.3</b><br>11.3.1<br>11.3.2<br>11.3.3<br>11.3.4                                                                                                      | IO Expander Parameters<br>CHAPTER 11 ALARMS<br>FURTHER ALARM DEFINITIONS<br>ANALOGUE ALARMS<br>Analogue Alarm Types<br>DIGITAL ALARMS<br>Digital Alarm Types<br>Alarm Relay Output<br>How Alarms are Indicated<br>To Acknowledge an Alarm                                                                                                                                                                           |           |
| 11             | 10.1.1<br>11.1<br>11.2<br>11.2.1<br>11.3<br>11.3.1<br>11.3.2<br>11.3.3<br>11.3.4<br>11.4                                                                                                                          | IO Expander Parameters<br>CHAPTER 11 ALARMS<br>FURTHER ALARM DEFINITIONS<br>ANALOGUE ALARMS<br>Analogue Alarm Types<br>DIGITAL ALARMS<br>Digital Alarm Types<br>Alarm Relay Output<br>How Alarms are Indicated<br>To Acknowledge an Alarm<br>ALARM PARAMETERS                                                                                                                                                       |           |
| 11             | <b>10.1.1</b><br><b>11.1</b><br><b>11.2</b><br>11.2.1<br><b>11.3</b><br>11.3.1<br>11.3.2<br>11.3.3<br>11.3.4<br><b>11.4</b><br>11.4.1                                                                             | IO Expander Parameters<br>CHAPTER 11 ALARMS<br>FURTHER ALARM DEFINITIONS<br>ANALOGUE ALARMS<br>Analogue Alarm Types<br>DIGITAL ALARMS<br>Digital Alarm Types<br>Alarm Relay Output<br>How Alarms are Indicated<br>To Acknowledge an Alarm<br>ALARM PARAMETERS<br>Example: To Configure Alarm 1                                                                                                                      |           |
| 11             | 10.1.1<br>11.1<br>11.2<br>11.2.1<br>11.3<br>11.3.1<br>11.3.2<br>11.3.3<br>11.3.4<br>11.4<br>11.4.1<br>11.5                                                                                                        | IO Expander Parameters<br>CHAPTER 11 ALARMS<br>FURTHER ALARM DEFINITIONS<br>ANALOGUE ALARMS<br>Analogue Alarm Types<br>DIGITAL ALARMS<br>Digital Alarm Types<br>Alarm Relay Output<br>How Alarms are Indicated<br>To Acknowledge an Alarm<br>ALARM PARAMETERS<br>Example: To Configure Alarm 1<br>DIAGNOSTIC ALARMS                                                                                                 |           |
| 11             | 10.1.1         11.1         11.2         11.3.1         11.3.2         11.3.3         11.3.4         11.4         11.5         11.6                                                                               | IO Expander Parameters<br>CHAPTER 11 ALARMS<br>FURTHER ALARM DEFINITIONS<br>ANALOGUE ALARMS<br>Analogue Alarm Types<br>DIGITAL ALARMS<br>Digital Alarm Types<br>Alarm Relay Output<br>How Alarms are Indicated<br>To Acknowledge an Alarm<br>ALARM PARAMETERS<br>Example: To Configure Alarm 1<br>DIAGNOSTIC ALARMS<br>TO SET UP ALARMS USING ITOOLS                                                                |           |
| 11             | 10.1.1<br>11.1<br>11.2<br>11.2.1<br>11.3<br>11.3.1<br>11.3.2<br>11.3.3<br>11.3.4<br>11.4<br>11.5<br>11.6                                                                                                          | IO Expander Parameters<br>CHAPTER 11 ALARMS<br>FURTHER ALARM DEFINITIONS<br>ANALOGUE ALARMS<br>Analogue Alarm Types<br>DIGITAL ALARMS<br>Digital Alarm Types<br>Alarm Relay Output<br>How Alarms are Indicated<br>To Acknowledge an Alarm<br>ALARM PARAMETERS<br>Example: To Configure Alarm 1<br>DIAGNOSTIC ALARMS<br>TO SET UP ALARMS USING ITOOLS<br>BCD INDUIT                                                  |           |
| 11             | 10.1.1         11.1         11.2         11.2.1         11.3.1         11.3.2         11.3.3         11.3.4         11.4         11.5         11.6                                                                | IO Expander Parameters<br>CHAPTER 11 ALARMS<br>FURTHER ALARM DEFINITIONS<br>ANALOGUE ALARMS<br>Analogue Alarm Types<br>DIGITAL ALARMS<br>Digital Alarm Types<br>Alarm Relay Output<br>How Alarms are Indicated<br>To Acknowledge an Alarm<br>ALARM PARAMETERS<br>Example: To Configure Alarm 1<br>DIAGNOSTIC ALARMS<br>TO SET UP ALARMS USING ITOOLS<br>BCD INPUT                                                   |           |
| 11             | 10.1.1         11.1         11.2         11.3.1         11.3.2         11.3.3         11.3.4         11.4         11.5         11.6         2.         12.1                                                       | IO Expander Parameters<br>CHAPTER 11 ALARMS<br>FURTHER ALARM DEFINITIONS<br>ANALOGUE ALARMS<br>Analogue Alarm Types<br>DIGITAL ALARMS<br>Digital Alarm Types<br>Alarm Relay Output<br>How Alarms are Indicated<br>To Acknowledge an Alarm<br>ALARM PARAMETERS<br>Example: To Configure Alarm 1<br>DIAGNOSTIC ALARMS<br>TO SET UP ALARMS USING ITOOLS<br>BCD INPUT<br>BCD PARAMETERS<br>Example: To wire a PCD Input |           |
| 11<br>12       | 10.1.1         11.1         11.2         11.3.1         11.3.2         11.3.3         11.3.4         11.4         11.5         11.6         2.         12.1         12.1.1                                        | IO Expander Parameters<br>CHAPTER 11 ALARMS<br>FURTHER ALARM DEFINITIONS<br>ANALOGUE ALARMS<br>Analogue Alarm Types<br>DIGITAL ALARMS<br>Digital Alarm Types<br>Alarm Relay Output<br>How Alarms are Indicated<br>To Acknowledge an Alarm<br>ALARM PARAMETERS<br>Example: To Configure Alarm 1<br>DIAGNOSTIC ALARMS<br>TO SET UP ALARMS USING ITOOLS<br>BCD INPUT<br>BCD PARAMETERS<br>Example: To wire a BCD Input |           |
| 11<br>12<br>13 | 10.1.1<br>11.1<br>11.2<br>11.2.1<br>11.3<br>11.3.1<br>11.3.2<br>11.3.3<br>11.3.4<br>11.4<br>11.5<br>11.6<br>2.<br>12.1<br>12.1.1<br>3.                                                                            | IO Expander Parameters<br>CHAPTER 11 ALARMS                                                                                                                                                                                                                                                                                                                                                                         |           |
| 11<br>12<br>13 | 10.1.1         11.1         11.2         11.3.1         11.3.2         11.3.3         11.3.3         11.3.4         11.4         11.5         11.6         2.         12.1         12.1.1         8.         13.1 | IO Expander Parameters<br>CHAPTER 11 ALARMS                                                                                                                                                                                                                                                                                                                                                                         |           |
| 11<br>12<br>13 | 10.1.1         11.1         11.2         11.3.1         11.3.2         11.3.3         11.3.4         11.4         11.5         11.6         2.         12.1         12.1.1                                        | IO Expander Parameters<br>CHAPTER 11 ALARMS                                                                                                                                                                                                                                                                                                                                                                         |           |
| 11<br>12<br>13 | 10.1.1<br>11.1<br>11.2<br>11.2.1<br>11.3<br>11.3.1<br>11.3.2<br>11.3.3<br>11.3.4<br>11.4<br>11.4<br>11.4<br>11.5<br>11.6<br>2.<br>12.1<br>13.1<br>13.1.1<br>13.1.2                                                | IO Expander Parameters                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 11<br>12<br>13 | 10.1.1<br>11.1<br>11.2<br>11.2.1<br>11.3<br>11.3.1<br>11.3.2<br>11.3.3<br>11.3.4<br>11.4<br>11.4<br>11.5<br>11.6<br>2.<br>13.1<br>13.1.1<br>13.1.2<br>13.2<br>13.2                                                | IO Expander Parameters                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 11<br>12<br>13 | 10.1.1<br>11.1<br>11.2<br>11.2.1<br>11.3<br>11.3.1<br>11.3.2<br>11.3.3<br>11.3.4<br>11.4<br>11.5<br>11.6<br>2.<br>12.1<br>13.1.1<br>13.1.2<br>13.2.1<br>13.2.1                                                    | IO Expander Parameters                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 11<br>12<br>13 | 10.1.1<br>11.1<br>11.2<br>11.2.1<br>11.3<br>11.3.1<br>11.3.2<br>11.3.3<br>11.3.4<br>11.4<br>11.5<br>11.6<br>2.<br>12.1<br>12.1.1<br>13.1.2<br>13.2.1<br>13.2.2                                                    | IO Expander Parameters                                                                                                                                                                                                                                                                                                                                                                                              |           |

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy FranceE-mail:hvssystem@hvssystem.comFax: 03 26 85 19 08, Tel : 03 26 82 49 29Site web : www.hvssystem.com

| 13.3   | BROADCAST MASTER COMMUNICATIONS                        | 113 |
|--------|--------------------------------------------------------|-----|
| 13.3.1 | 3500 Broadcast Master                                  | 113 |
| 13.3.2 | Wiring Connections - Broadcast Communications          |     |
| 13.4   | DIGITAL COMMUNICATIONS PARAMETERS                      | 115 |
| 13.4.1 | Communications Identity                                |     |
| 13.4.2 | Communication Address                                  |     |
| 13.4.3 | Baud Rate                                              | 116 |
| 13.4.4 | Parity                                                 | 116 |
| 13.4.5 | RX/TX Delay Time                                       |     |
| 13.5   | EXAMPLE 1:- TO SET UP INSTRUMENT ADDRESS               | 116 |
| 13.6   | EXAMPLE 2: TO SEND SP FROM THE MASTER TO PV IN A SLAVE | 117 |
| 13.7   | MODBUS ADDRESSES                                       | 117 |
| 13.8   | ETHERNET                                               | 118 |
| 13.8.1 | Instrument setup                                       | 118 |
| 13.8.2 | MAC address display                                    |     |
| 13.8.3 | DHCP Settings                                          | 118 |
| 13.8.4 | Network Connection                                     | 118 |
| 13.8.5 | Dynamic IP Addressing                                  |     |
| 13.8.6 | Fixed IP Addressing                                    | 118 |
| 13.8.7 | Additional notes                                       |     |
| 13.8.8 | iTools Setup                                           |     |
| 13.8.9 | Ethernet Parameters                                    |     |
| 14     | COUNTERS TIMERS TOTALISERS REAL TIME CLOCK             | 120 |

| 14.1   | COUNTERS                            | 120 |
|--------|-------------------------------------|-----|
| 14.1.1 | Counter Parameters                  | 121 |
| 14.2   | TIMERS                              | 122 |
| 14.2.1 | Timer Types                         | 122 |
| 14.2.2 | On Pulse Timer Mode                 | 122 |
| 14.2.3 | Off Delay Timer Mode                | 123 |
| 14.2.4 | One Shot Timer Mode                 | 124 |
| 14.2.5 | Compressor or Minimum On Timer Mode | 125 |
| 14.2.6 | Timer Parameters                    | 126 |
| 14.3   | TOTALISERS                          | 127 |
| 14.3.1 | Totaliser Parameters                | 127 |
| 14.4   | REAL TIME CLOCK                     | 129 |
| 14.4.1 | Real Time Clock Parameters          | 129 |

| 15.    | APPLICATION SPECIFIC                            |     |
|--------|-------------------------------------------------|-----|
| 15.1   | HUMIDITY CONTROL                                | 130 |
| 15.1.1 | Overview                                        |     |
| 15.1.2 | Example Of Humidity Controller Connections      | 130 |
| 15.1.3 | Temperature Control Of An Environmental Chamber | 131 |
| 15.1.4 | Humidity Control Of An Environmental Chamber    | 131 |
| 15.2   | HUMIDITY PARAMETERS                             | 132 |
| 15.3   | ZIRCONIA (CARBON POTENTIAL) CONTROL             | 133 |
| 15.3.1 | Temperature Control                             |     |
| 15.3.2 | Carbon Potential Control                        | 133 |
| 15.3.3 | Sooting Alarm                                   | 133 |
| 15.3.4 | Automatic Probe Cleaning                        | 133 |
| 15.3.5 | Endothermic Gas Correction                      | 133 |
| 15.3.6 | Clean Probe                                     | 133 |
| 15.3.7 | Probe Status                                    |     |
| 15.3.8 | Sooting Alarm                                   |     |
| 15.4   | ZIRCONIA PARAMETERS                             |     |
| 15.5   | EXAMPLE OF CARBON POTENTIAL CONTROL CONNECTIONS | 135 |

4.

| 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | INPUT MONITOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maximum Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |
| 16.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Minimum Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |
| 16.1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Time Above Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                     |
| 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INPUT MONITOR PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                     |
| 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHAPTER 17 LOGIC AND MATHS OPERATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                     |
| 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LOGIC OPERATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                     |
| 17.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Logic 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                     |
| 17.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Logic Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                     |
| 17.1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Logic Operator Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                     |
| 17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EIGHT INPUT LOGIC OPERATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                     |
| 17.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Eight Input Logic Operator Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                     |
| 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MATHS OPERATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                     |
| 17.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Math Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                     |
| 17.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Math Operator Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                     |
| 17.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample and Hold Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                     |
| 17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EIGHT INPUT ANALOG MULTIPLEXERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 146                                                                                                                                                                                                                                                                                                                                                 |
| 17.4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Multiple Input Operator Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |
| 17.4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fallback                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                     |
| 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHAPTER 18 INPUT CHARACTERISATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 148                                                                                                                                                                                                                                                                                                                                                 |
| 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INPUT LINEARISATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                     |
| 18.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Compensation for Sensor Non-Linearities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                     |
| 18.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Input Linearisation Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |
| 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | POLYNOMIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 F 4                                                                                                                                                                                                                                                                                                                                               |
| 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHAPTER 19 LOAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                     |
| 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                     |
| 1 <b>9.</b><br>19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                     |
| 19.1<br>19.1<br><b>20</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS<br>CHAPTER 20 CONTROL LOOP SET UP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                     |
| 19.1<br>19.1<br><b>20.</b><br>20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS<br>CHAPTER 20 CONTROL LOOP SET UP<br>WHAT IS A CONTROL LOOP?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |
| 19.1<br>19.1<br><b>20.</b><br>20.1<br>20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS<br>CHAPTER 20 CONTROL LOOP SET UP<br>WHAT IS A CONTROL LOOP?<br>LOOP PARAMETERS - MAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                     |
| <b>20.</b><br>20.1<br>20.2<br>20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS<br>CHAPTER 20 CONTROL LOOP SET UP<br>WHAT IS A CONTROL LOOP?<br>LOOP PARAMETERS - MAIN<br>LOOP SET UP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                     |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br>20.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS<br>CHAPTER 20 CONTROL LOOP SET UP<br>WHAT IS A CONTROL LOOP?<br>LOOP PARAMETERS - MAIN<br>LOOP SET UP<br>Types of Control Loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                     |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br>20.3.1<br><b>20.4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS<br>CHAPTER 20 CONTROL LOOP SET UP<br>WHAT IS A CONTROL LOOP?<br>LOOP PARAMETERS - MAIN<br>LOOP SET UP<br>Types of Control Loop<br>PID CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                     |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br>20.3.1<br><b>20.4</b><br>20.4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS<br>CHAPTER 20 CONTROL LOOP SET UP<br>WHAT IS A CONTROL LOOP?<br>LOOP PARAMETERS - MAIN<br>LOOP SET UP<br>Types of Control Loop<br>PID CONTROL<br>Proportional Term                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                     |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br>20.3.1<br><b>20.4</b><br>20.4.1<br>20.4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                     |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br><b>20.3.1</b><br><b>20.4</b><br>20.4.1<br>20.4.2<br>20.4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                     |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br>20.3.1<br><b>20.4</b><br>20.4.1<br>20.4.2<br>20.4.3<br>20.4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS<br>CHAPTER 20 CONTROL LOOP SET UP<br>WHAT IS A CONTROL LOOP?<br>LOOP PARAMETERS - MAIN<br>LOOP SET UP<br>Types of Control Loop<br>PID CONTROL<br>Proportional Term<br>Integral Term<br>Derivative Term<br>High and Low Cutback                                                                                                                                                                                                                                                                                                                                                                       | 154<br>154<br>154<br>156<br>156<br>157<br>157<br>158<br>159<br>159<br>160<br>160<br>160                                                                                                                                                                                                                                                             |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br>20.3.1<br><b>20.4</b><br>20.4.1<br>20.4.2<br>20.4.3<br>20.4.4<br>20.4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 154<br>154<br>154<br>156<br>156<br>157<br>157<br>158<br>159<br>159<br>160<br>160<br>160<br>160                                                                                                                                                                                                                                                      |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br>20.3.1<br><b>20.4</b><br>20.4.1<br>20.4.2<br>20.4.3<br>20.4.4<br>20.4.5<br>20.4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS<br>CHAPTER 20 CONTROL LOOP SET UP<br>WHAT IS A CONTROL LOOP?<br>LOOP PARAMETERS - MAIN<br>LOOP SET UP<br>Types of Control Loop<br>PID CONTROL.<br>Proportional Term<br>Integral Term<br>Derivative Term<br>High and Low Cutback<br>Integral action and manual reset<br>Relative Cool Gain                                                                                                                                                                                                                                                                                                            | 154<br>154<br>154<br>156<br>156<br>157<br>157<br>157<br>158<br>159<br>159<br>160<br>160<br>160<br>160                                                                                                                                                                                                                                               |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br>20.3.1<br><b>20.4</b><br>20.4.1<br>20.4.2<br>20.4.3<br>20.4.4<br>20.4.5<br>20.4.6<br>20.4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS<br>CHAPTER 20 CONTROL LOOP SET UP<br>WHAT IS A CONTROL LOOP?<br>LOOP PARAMETERS - MAIN<br>LOOP SET UP<br>Types of Control Loop<br>PID CONTROL.<br>Proportional Term<br>Integral Term<br>Derivative Term<br>High and Low Cutback<br>Integral action and manual reset<br>Relative Cool Gain<br>Loop Break Time.                                                                                                                                                                                                                                                                                        | 154<br>154<br>154<br>155<br>156<br>157<br>157<br>157<br>158<br>159<br>159<br>160<br>160<br>160<br>160<br>160                                                                                                                                                                                                                                        |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br><b>20.3.1</b><br><b>20.4</b><br><b>20.4.1</b><br><b>20.4.2</b><br><b>20.4.3</b><br><b>20.4.4</b><br><b>20.4.5</b><br><b>20.4.6</b><br><b>20.4.7</b><br><b>20.4.8</b><br><b>20.4.8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 154<br>154<br>154<br>156<br>156<br>157<br>157<br>157<br>158<br>159<br>159<br>160<br>160<br>160<br>160<br>160<br>161                                                                                                                                                                                                                                 |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br><b>20.3.1</b><br><b>20.4</b><br>20.4.1<br>20.4.2<br>20.4.3<br>20.4.4<br>20.4.5<br>20.4.6<br>20.4.7<br>20.4.8<br>20.4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 154         154         154         155         157         157         158         159         160         160         160         160         161         161                                                                                                                                                                                     |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br><b>20.3</b><br><b>20.4.1</b><br><b>20.4.2</b><br><b>20.4.3</b><br><b>20.4.4</b><br><b>20.4.4</b><br><b>20.4.5</b><br><b>20.4.6</b><br><b>20.4.6</b><br><b>20.4.7</b><br><b>20.4.8</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.1</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.1</b><br><b>20.4.1</b><br><b>20.4.1</b><br><b>20.4.2</b><br><b>20.4.3</b><br><b>20.4.4</b><br><b>20.4.4</b><br><b>20.4.4</b><br><b>20.4.5</b><br><b>20.4.6</b><br><b>20.4.7</b><br><b>20.4.8</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.1</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>20.4.9</b><br><b>2</b> | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 154         154         154         155         157         157         158         159         160         160         160         160         160         161         161         162                                                                                                                                                             |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br>20.3.1<br><b>20.4</b><br>20.4.1<br>20.4.2<br>20.4.3<br>20.4.4<br>20.4.5<br>20.4.6<br>20.4.7<br>20.4.8<br>20.4.9<br>20.4.1<br><b>20.5</b><br><b>20.5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 154         154         154         155         157         157         158         159         160         160         160         160         160         160         161         162         163         162                                                                                                                                     |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br>20.3.1<br><b>20.4</b><br>20.4.1<br>20.4.2<br>20.4.3<br>20.4.4<br>20.4.5<br>20.4.6<br>20.4.7<br>20.4.8<br>20.4.9<br>20.4.1<br><b>20.5</b><br>20.5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 154         154         154         155         156         157         157         157         158         159         159         160         160         160         160         161         161         161         162         163         163                                                                                                 |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br>20.3.1<br><b>20.4</b><br>20.4.1<br>20.4.2<br>20.4.3<br>20.4.4<br>20.4.5<br>20.4.6<br>20.4.7<br>20.4.8<br>20.4.9<br>20.4.1<br><b>20.5</b><br>20.5.1<br>20.5.2<br>20.5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 154         156         156         157         157         157         158         159         160         160         160         160         160         160         161         162         163         163         163                                                                                                                         |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br><b>20.3.1</b><br><b>20.4</b><br><b>20.4.1</b><br><b>20.4.2</b><br><b>20.4.3</b><br><b>20.4.4</b><br><b>20.4.5</b><br><b>20.4.6</b><br><b>20.4.7</b><br><b>20.4.8</b><br><b>20.4.9</b><br><b>20.4.1</b><br><b>20.5</b><br><b>20.5.1</b><br><b>20.5.1</b><br><b>20.5.2</b><br><b>20.5.3</b><br><b>20.5.4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 154         156         156         157         157         157         158         159         160         160         160         160         160         161         162         163         163         163         163                                                                                                                         |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br><b>20.3.1</b><br><b>20.4</b><br><b>20.4.1</b><br><b>20.4.2</b><br><b>20.4.3</b><br><b>20.4.4</b><br><b>20.4.5</b><br><b>20.4.6</b><br><b>20.4.7</b><br><b>20.4.8</b><br><b>20.4.1</b><br><b>20.5</b><br><b>20.5.1</b><br><b>20.5.1</b><br><b>20.5.2</b><br><b>20.5.4</b><br><b>20.5.4</b><br><b>20.5.4</b><br><b>20.5.4</b><br><b>20.5.4</b><br><b>20.5.5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 154         156         156         157         157         158         159         160         160         160         160         161         162         163         163         164                                                                                                                                                             |
| 19.1         20.1         20.2         20.3         20.4.1         20.4.2         20.4.3         20.4.4         20.4.5         20.4.6         20.4.7         20.4.8         20.4.1         20.5.1         20.5.2         20.5.3         20.5.4         20.5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 154         154         154         154         155         157         157         158         159         159         160         160         160         160         161         162         163         163         163         164         164                                                                                                 |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br>20.3.1<br><b>20.4</b><br>20.4.1<br>20.4.2<br>20.4.3<br>20.4.4<br>20.4.5<br>20.4.6<br>20.4.7<br>20.4.8<br>20.4.9<br>20.5.1<br>20.5.2<br>20.5.3<br>20.5.4<br>20.5.5<br>20.5.6<br><b>20.6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 154         154         154         155         156         157         157         158         159         159         160         160         160         160         161         162         163         163         163         163         163         164         165         165                                                             |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br>20.3.1<br><b>20.4</b><br>20.4.1<br>20.4.2<br>20.4.3<br>20.4.4<br>20.4.5<br>20.4.6<br>20.4.7<br>20.4.8<br>20.4.9<br>20.5.1<br>20.5.2<br>20.5.3<br>20.5.4<br>20.5.5<br>20.5.6<br><b>20.6</b><br>20.6 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS<br>CHAPTER 20 CONTROL LOOP SET UP<br>WHAT IS A CONTROL LOOP?<br>LOOP PARAMETERS - MAIN<br>LOOP SET UP.<br>Types of Control Loop<br>PID CONTROL<br>Proportional Term<br>Integral Term<br>Derivative Term<br>High and Low Cutback<br>Integral action and manual reset<br>Relative Cool Gain<br>Loop Break Time<br>Cooling Algorithm<br>Gain Scheduling<br>0 PID Parameters<br>TUNING<br>Automatic Tuning<br>One-shot Tuning<br>Calculation of the cutback values<br>Manual Tuning<br>Setting the Cutback Values<br>Tune Parameters<br>SETPOINT FUNCTION BLOCK                                          | 154         154         154         155         156         157         157         157         158         159         159         160         160         160         161         161         161         162         163         163         163         163         164         165         166         165         166                         |
| <b>19.</b><br><b>19.1</b><br><b>20.</b><br><b>20.1</b><br><b>20.2</b><br><b>20.3</b><br>20.3.1<br><b>20.4</b><br>20.4.1<br>20.4.2<br>20.4.3<br>20.4.4<br>20.4.5<br>20.4.6<br>20.4.7<br>20.4.8<br>20.4.9<br>20.4.1<br><b>20.5</b><br>20.5.1<br>20.5.2<br>20.5.3<br>20.5.4<br>20.5.5<br>20.5.6<br><b>20.6</b><br>20.6.1<br>20.6 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHAPTER 19 LOAD<br>INPUT LINEARISATION PARAMETERS<br>CHAPTER 20 CONTROL LOOP SET UP<br>WHAT IS A CONTROL LOOP?<br>LOOP PARAMETERS - MAIN<br>LOOP SET UP<br>Types of Control Loop<br>PID CONTROL<br>Proportional Term<br>Integral Term<br>Derivative Term<br>High and Low Cutback<br>Integral action and manual reset<br>Relative Cool Gain<br>Loop Break Time<br>Cooling Algorithm<br>Gain Scheduling<br>O PID Parameters<br>TUNING<br>Automatic Tuning<br>One-shot Tuning<br>Calculation of the cutback values<br>Manual Tuning<br>Setting the Cutback Values<br>Tune Parameters<br>SETPOINT FUNCTION BLOCK<br>Setpoint Function Block<br>SP Tracking | 154         154         154         154         155         156         157         157         158         159         159         160         160         160         160         161         161         161         162         163         163         163         163         163         164         165         166         166         166 |

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy FranceE-mail:hvssystem@hvssystem.comFax: 03 26 85 19 08, Tel : 03 26 82 49 29Site web : www.hvssystem.com

| 20.6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 Manual Tracking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20.6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 Rate Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                    |
| 20.6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 Setpoint Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 167                                                                                                                                                                                |
| 20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OUTPUT FUNCTION BLOCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 169                                                                                                                                                                                |
| 20.7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 Power Feed Forward Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                    |
| 20.7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 Output Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                    |
| 20.7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 Effect of Control Action, Hysteresis and Deadband                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                    |
| 21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHAPTER 21 SETPOINT PROGRAMMER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    |
| 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PROGRAMMER OPERATING STATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                    |
| 21.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                    |
| 21.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    |
| 21.1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 Hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |
| 21.1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 Program Cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                    |
| 21.1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 Servo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                    |
| 21.1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 Skip Segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    |
| 21.1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 Advance Segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    |
| 21.1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 Fast x10 mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                    |
| 21.1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 Sensor break recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                    |
| 21.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 Holdback (Guaranteed Soak)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |
| 21.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 Segment Types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                    |
| 21.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12 Power Fail Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |
| 21.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13 Sync mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                    |
| 21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CREATING OR EDITING A PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |
| 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TO SELECT, RUN, HOLD OR RESET A PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                    |
| 21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PROGRAM EDITING USING ITOOLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                    |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                    |
| <b>ZZ</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHAPTER 22 SWITCH OVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |
| <b>22.</b> 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHAPTER 22       SWITCH OVER         1       Example: To Set the Switch Over Levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                    |
| <b>22.1.1</b><br>22.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHAPTER 22       SWITCH OVER         1       Example: To Set the Switch Over Levels         2       Switch Over Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                    |
| <b>22.</b> 1.1<br>22.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHAPTER 22       SWITCH OVER         1       Example: To Set the Switch Over Levels         2       Switch Over Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>186</b><br>                                                                                                                                                                     |
| 22.1.1<br>22.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHAPTER 22 SWITCH OVER<br>Example: To Set the Switch Over Levels<br>Switch Over Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                    |
| 22.1.1<br>22.1.2<br>23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHAPTER 22 SWITCH OVER<br>Example: To Set the Switch Over Levels<br>Switch Over Parameters<br>CHAPTER 23 TRANSDUCER SCALING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                    |
| 22.1.1<br>22.1.2<br>23.<br>23.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHAPTER 22 SWITCH OVER<br>Example: To Set the Switch Over Levels<br>Switch Over Parameters<br>CHAPTER 23 TRANSDUCER SCALING<br>AUTO-TARE CALIBRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                    |
| 22.<br>22.1.1<br>22.1.2<br>23.<br>23.1<br>23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHAPTER 22 SWITCH OVER<br>Example: To Set the Switch Over Levels<br>Switch Over Parameters<br>CHAPTER 23 TRANSDUCER SCALING<br>AUTO-TARE CALIBRATION<br>STRAIN GAUGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                    |
| 22.<br>22.1.1<br>22.1.2<br>23.<br>23.1<br>23.2<br>23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAPTER 22 SWITCH OVER<br>1 Example: To Set the Switch Over Levels<br>2 Switch Over Parameters<br>CHAPTER 23 TRANSDUCER SCALING<br>AUTO-TARE CALIBRATION<br>STRAIN GAUGE<br>LOAD CELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    |
| 22.<br>22.1.1<br>22.1.2<br>23.<br>23.1<br>23.2<br>23.3<br>23.4<br>23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAPTER 22 SWITCH OVER<br>Example: To Set the Switch Over Levels<br>Switch Over Parameters<br>CHAPTER 23 TRANSDUCER SCALING<br>AUTO-TARE CALIBRATION<br>STRAIN GAUGE<br>LOAD CELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    |
| 22.<br>22.1.1<br>22.1.2<br>23.<br>23.1<br>23.2<br>23.3<br>23.4<br>23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAPTER 22 SWITCH OVER<br>Example: To Set the Switch Over Levels<br>Switch Over Parameters<br>CHAPTER 23 TRANSDUCER SCALING<br>AUTO-TARE CALIBRATION<br>STRAIN GAUGE<br>LOAD CELL<br>COMPARISON CALIBRATION<br>TRANSDUCER SCALING PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>186</b><br>186<br>187<br><b>188</b><br><b>188</b><br>188<br>189<br>189<br>190<br>191                                                                                            |
| 22.<br>22.1.1<br>22.1.2<br>23.<br>23.1<br>23.2<br>23.3<br>23.4<br>23.5<br>23.5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>CHAPTER 22 SWITCH OVER</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>186</b> 186 186 187 <b>188 188 188 189 189 190 191</b> 192                                                                                                                      |
| 22.<br>22.1.1<br>22.1.2<br>23.<br>23.1<br>23.2<br>23.3<br>23.4<br>23.5<br>23.5.1<br>23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHAPTER 22 SWITCH OVER<br>1 Example: To Set the Switch Over Levels<br>2 Switch Over Parameters<br>CHAPTER 23 TRANSDUCER SCALING<br>AUTO-TARE CALIBRATION<br>STRAIN GAUGE<br>LOAD CELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>186</b> 186 186 187 <b>188 188 188 189 189 190 191</b> 192 193                                                                                                                  |
| <b>22.</b><br>22.1.1<br>22.1.2<br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.5123.</b><br><b>23.5123.5123.5123.5123.5123.5123.5123.5123.51123.51123.51123.51123.51123.1111111111111</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHAPTER 22 SWITCH OVER<br>1 Example: To Set the Switch Over Levels<br>2 Switch Over Parameters<br>CHAPTER 23 TRANSDUCER SCALING<br>AUTO-TARE CALIBRATION<br>STRAIN GAUGE<br>LOAD CELL<br>COMPARISON CALIBRATION<br>TRANSDUCER SCALING PARAMETERS<br>1 Parameter Notes<br>TRANSDUCER SUMMARY PAGE<br>1 Tare Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 186<br>186<br>187<br>188<br>188<br>188<br>189<br>189<br>190<br>191<br>192<br>193<br>193                                                                                            |
| <b>22.</b><br>22.1.1<br>22.1.2<br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>2</b><br><b>23</b> .<br><b>2</b><br><b>23</b> .<br><b>2</b><br><b>23</b> .<br><b>2</b><br><b>23</b> .<br><b>2</b><br><b>23</b> .<br><b>2</b><br><b>23</b> .<br><b>2</b><br><b>23</b> .<br><b>23</b> .<br><b>6</b> .<br><b>23</b> .6.2<br><b>23</b> .6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>CHAPTER 22 SWITCH OVER</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>186</b> 186 186 187 <b>188 188 189 190 191</b> 192 <b>193</b> 194                                                                                                               |
| <b>22.</b><br>22.1.1<br>22.1.2<br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b>                                                                     | CHAPTER 22       SWITCH OVER         1       Example: To Set the Switch Over Levels         2       Switch Over Parameters         2       Strain GAUGE         1       Load Cell         2       Strain Gauge         2       Strain Gauge         3       Load Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>186</b> 186 186 187 <b>188 188 189 190 191</b> 192 <b>193</b> 194 195                                                                                                           |
| <b>22.</b><br>22.1.1<br>22.1.2<br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>2</b><br><b>23.</b><br><b>6</b> .<br><b>2</b><br><b>23.</b><br><b>6</b> .<br><b>2</b><br><b>23.</b><br><b>6</b> .<br><b>2</b><br><b>23.</b><br><b>6</b> .<br><b>2</b><br><b>23.6</b> .<br><b>2</b><br><b>23.6</b> .<br><b>2</b><br><b>23.6</b> .<br><b>235</b> . <b>235</b> . <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>CHAPTER 22 SWITCH OVER</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>186</b> 186 186 187 <b>188 188 188 189 190 191</b> 192 <b>193</b> 193 194 195                                                                                                   |
| <b>22.</b><br>22.1.1<br>22.1.2<br><b>23.</b><br><b>23.</b><br><b>23.1</b><br><b>23.2</b><br><b>23.3</b><br><b>23.4</b><br><b>23.5</b><br>23.5.1<br><b>23.6</b><br>23.6.1<br>23.6.2<br>23.6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHAPTER 22       SWITCH OVER         1       Example: To Set the Switch Over Levels         2       Switch Over Parameters         3       CHAPTER 23         TRANSDUCER SCALIBRATION       Strain Gauge         1       Parameter Notes         1       Tare Calibration         2       Strain Gauge         3       Load Cell         4       Comparison Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>186</b> 186 186 187 <b>188 188 188 189 190 191</b> 192 <b>193</b> 193 194 195 196                                                                                               |
| <b>22.</b><br>22.1.1<br>22.1.2<br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b>                                                                     | CHAPTER 22       SWITCH OVER         1       Example: To Set the Switch Over Levels         2       Switch Over Parameters         3       CHAPTER 23         TRANSDUCER SCALIBRATION       Strain Gauge         1       Parameter Notes         1       Tare Calibration         2       Strain Gauge         3       Load Cell         4       Comparison Calibration         4       Comparison Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 186<br>                                                                                                                                                                            |
| <b>22.</b><br>22.1.1<br>22.1.2<br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>6</b><br><b>23.</b><br><b>6</b> .<br><b>23.</b><br><b>6</b> .<br><b>23.</b><br><b>6</b> .<br><b>223.</b><br><b>6</b> .<br><b>23.</b><br><b>6</b> .<br><b>23.</b><br><b>6</b> .<br><b>23.</b><br><b>6</b> .<br><b>23.</b><br><b>6</b> .<br><b>23.</b><br><b>6</b> .<br><b>223.</b><br><b>6</b> .<br><b>22</b> .<br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>24.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>27.</b><br><b>27.</b><br><b>27.</b><br><b>2222222222222</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHAPTER 22 SWITCH OVER<br>Example: To Set the Switch Over Levels<br>Switch Over Parameters<br>CHAPTER 23 TRANSDUCER SCALING<br>AUTO-TARE CALIBRATION<br>STRAIN GAUGE<br>LOAD CELL<br>COMPARISON CALIBRATION<br>TRANSDUCER SCALING PARAMETERS<br>Parameter Notes<br>TRANSDUCER SUMMARY PAGE<br>Tare Calibration<br>Strain Gauge<br>Load Cell<br>Comparison Calibration<br>CHAPTER 24 USER VALUES<br>USER VALUE PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 186<br>186<br>187<br>188<br>188<br>189<br>189<br>190<br>191<br>192<br>193<br>193<br>193<br>194<br>195<br>196<br>198                                                                |
| <b>22.</b><br>22.1.1<br>22.1.2<br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>6</b><br><b>23.</b><br><b>6</b> .<br><b>23.</b><br><b>6</b> .<br><b>23.</b><br><b>4</b> .<br><b>2</b> .<br><b>2</b> .<br><b>2</b> .<br><b>2</b> .<br><b>2</b> .<br><b>2</b> .<br><b>2</b> .<br><b>2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHAPTER 22 SWITCH OVER         1 Example: To Set the Switch Over Levels         2 Switch Over Parameters         2 Switch Over Parameters         CHAPTER 23 TRANSDUCER SCALING         AUTO-TARE CALIBRATION         STRAIN GAUGE         LOAD CELL         COMPARISON CALIBRATION         TRANSDUCER SCALING PARAMETERS         1 Parameter Notes         TRANSDUCER SUMMARY PAGE         1 Tare Calibration         2 Strain Gauge         3 Load Cell         4 Comparison Calibration         CHAPTER 24 USER VALUES         USER VALUE PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 186<br>186<br>186<br>187<br>188<br>189<br>189<br>190<br>191<br>192<br>193<br>193<br>193<br>194<br>195<br>196<br>198                                                                |
| 22.<br>22.1.1<br>22.1.2<br>23.<br>23.2<br>23.3<br>23.4<br>23.5<br>23.5.1<br>23.6<br>23.6.2<br>23.6.2<br>23.6.2<br>23.6.2<br>23.6.2<br>23.6.2<br>24.<br>24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHAPTER 22       SWITCH OVER         1       Example: To Set the Switch Over Levels         2       Switch Over Parameters         3       CALIBRATION         STRAIN GAUGE       COMPARISON CALIBRATION         COMPARISON CALIBRATION       TRANSDUCER SCALING PARAMETERS         1       Parameter Notes         TRANSDUCER SCALING PARAMETERS       Parameter Notes         1       Tare Calibration         2       Strain Gauge         3       Load Cell         4       Comparison Calibration         4       Comparison Calibration         4       USER VALUE PARAMETERS         4       USER VALUE PARAMETERS                                                                                                                                                                                                             | 186<br>186<br>186<br>187<br>188<br>189<br>189<br>189<br>190<br>191<br>192<br>193<br>193<br>193<br>194<br>195<br>196<br>198                                                         |
| <ul> <li>22.</li> <li>22.1.1</li> <li>22.1.2</li> <li>23.</li> <li>23.1</li> <li>23.2</li> <li>23.3</li> <li>23.4</li> <li>23.5</li> <li>23.6.1</li> <li>23.6.2</li> <li>23.6.2</li> <li>23.6.4</li> <li>24.</li> <li>24.1</li> <li>25.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHAPTER 22 SWITCH OVER<br>Example: To Set the Switch Over Levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 186<br>186<br>186<br>187<br>188<br>189<br>189<br>189<br>190<br>191<br>192<br>193<br>193<br>193<br>194<br>195<br>196<br>198<br>198                                                  |
| 22.<br>22.1.1<br>22.1.2<br>23.<br>23.1<br>23.2<br>23.3<br>23.4<br>23.5<br>23.6.1<br>23.6.2<br>23.6.2<br>23.6.2<br>23.6.2<br>23.6.2<br>24.<br>24.1<br>25.<br>25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHAPTER 22 SWITCH OVER<br>Example: To Set the Switch Over Levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 186<br>186<br>186<br>187<br>188<br>189<br>189<br>189<br>190<br>191<br>192<br>193<br>193<br>193<br>194<br>195<br>196<br>198<br>198<br>200<br>200                                    |
| <b>22.</b><br>22.1.1<br>22.1.2<br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>23.</b><br><b>6</b><br><b>23.</b><br><b>6</b> .<br><b>23.</b><br><b>6</b> .<br><b>225.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25.</b><br><b>25</b> | CHAPTER 22 SWITCH OVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 186<br>186<br>186<br>187<br>188<br>189<br>189<br>189<br>190<br>191<br>192<br>193<br>193<br>193<br>194<br>195<br>196<br>198<br>198<br>200<br>200<br>200                             |
| <ul> <li>22.</li> <li>22.1.1</li> <li>22.1.2</li> <li>23.</li> <li>23.1</li> <li>23.2</li> <li>23.3</li> <li>23.4</li> <li>23.5</li> <li>23.5.1</li> <li>23.6.2</li> <li>23.6.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHAPTER 22 SWITCH OVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 186<br>186<br>186<br>187<br>188<br>189<br>189<br>190<br>191<br>192<br>193<br>193<br>193<br>193<br>194<br>195<br>196<br>198<br>198<br>198<br>200<br>200<br>200<br>200               |
| <ul> <li>22.</li> <li>22.1.1</li> <li>22.1.2</li> <li>23.</li> <li>23.1</li> <li>23.2</li> <li>23.3</li> <li>23.4</li> <li>23.5</li> <li>23.5.1</li> <li>23.6.2</li> <li>23.6.2</li> <li>23.6.2</li> <li>23.6.2</li> <li>23.6.2</li> <li>23.6.4</li> <li>24.</li> <li>24.1</li> <li>25.</li> <li>25.1</li> <li>25.2.1</li> <li>25.2.2</li> <li>25.2.1</li> <li>25.2.2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHAPTER 22       SWITCH OVER         1       Example: To Set the Switch Over Levels         2       Switch Over Parameters         3       LOAD CELL         COMPARISON CALIBRATION       TRANSDUCER SCALING PARAMETERS         1       Parameter Notes         TRANSDUCER SCALING PARAMETERS       Parameter Notes         1       Tare Calibration         2       Strain Gauge         3       Load Cell         4       Comparison Calibration         4       Comparison Calibration         4       Comparison Calibration         4       CHAPTER 25         CALIBRATION         INPUT CALIBRATION         INPUT CALIBRATION         PRECAUTIONS         1       To Calibrate mV Range         2       To Save the New Calibration Data                                                                                        | 186<br>186<br>186<br>187<br>188<br>189<br>189<br>190<br>191<br>192<br>193<br>193<br>193<br>194<br>195<br>196<br>198<br>198<br>198<br>200<br>200<br>200<br>201<br>201               |
| <ul> <li>22.</li> <li>22.1.1</li> <li>22.1.2</li> <li>23.</li> <li>23.1</li> <li>23.2</li> <li>23.3</li> <li>23.4</li> <li>23.5</li> <li>23.5.1</li> <li>23.6.2</li> <li>25.2</li> &lt;</ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAPTER 22       SWITCH OVER         1       Example: To Set the Switch Over Levels         2       Switch Over Parameters         2       STRAIN GAUGE         LOAD CELL       COMPARISON CALIBRATION         COMPARISON CALIBRATION       TRANSDUCER SCALING PARAMETERS         1       Parameter Notes         TRANSDUCER SUMMARY PAGE       Tare Calibration         2       Strain Gauge         3       Load Cell         4       Comparison Calibration         4       Comparison Calibration         4       Comparison Calibration         4       DER VALUE PARAMETERS         4       CHAPTER 25       CALIBRATION         4       DER VALUE PARAMETERS         5       CHAPTER 25       CALIBRATION         4       DER VALUE PARAMETERS         5       To Calibrate mV Range         5       To Save the New Calibration Data         5       To Return to Fa | 186<br>186<br>186<br>187<br>188<br>189<br>189<br>190<br>191<br>192<br>193<br>193<br>193<br>193<br>194<br>195<br>196<br>198<br>198<br>198<br>200<br>200<br>200<br>201<br>201<br>202 |
| <ul> <li>22.</li> <li>22.1.1</li> <li>22.1.2</li> <li>23.</li> <li>23.1</li> <li>23.2</li> <li>23.3</li> <li>23.4</li> <li>23.5</li> <li>23.5.1</li> <li>23.6.2</li> <li>25.2.2</li> <li>25.2.4</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHAPTER 22       SWITCH OVER         1       Example: To Set the Switch Over Levels         2       Switch Over Parameters         2       Strain GAUGE         LOAD CELL       COMPARISON CALIBRATION         COMPARISON CALIBRATION       TRANSDUCER SCALING PARAMETERS         1       Parameter Notes         TRANSDUCER SUMMARY PAGE       Tare Calibration         2       Strain Gauge         3       Load Cell         4       Comparison Calibration         4       Comparison Calibration         4       CHAPTER 25         CALIBRATION       Input CALIBRATION         INPUT CALIBRATION       Input CALIBRATION         INPUT CALIBRATION       Input Calibrate mV Range         1       To Calibrate mV Range         2       To Save the New Calibration Data         3       To Return to Factory Calibration         4       Thermocouple Calibration     | 186<br>186<br>186<br>187<br>188<br>189<br>189<br>190<br>191<br>192<br>193<br>193<br>193<br>193<br>194<br>195<br>196<br>198<br>198<br>200<br>200<br>200<br>201<br>201<br>202        |
| <ul> <li>22.</li> <li>22.1.1</li> <li>22.1.2</li> <li>23.</li> <li>23.1</li> <li>23.2</li> <li>23.3</li> <li>23.4</li> <li>23.5</li> <li>23.6.1</li> <li>23.6.2</li> <li>23.6.2</li> <li>23.6.4</li> <li>24.</li> <li>24.</li> <li>24.1</li> <li>25.</li> <li>25.2.1</li> <li>25.2.2</li> <li>25.2.2</li> <li>25.2.4</li> <li>25.2.5</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHAPTER 22       SWITCH OVER         1       Example: To Set the Switch Over Levels         2       Switch Over Parameters         2       Strain GAUGE         LOAD CELL       COMPARISON CALIBRATION         COMPARISON CALIBRATION       TRANSDUCER SCALING PARAMETERS         1       Parameter Notes         TRANSDUCER SUMMARY PAGE       Tare Calibration         2       Strain Gauge         3       Load Cell         4       Comparison Calibration         2       Strain Gauge         3       Load Cell         4       Comparison Calibration         4       Comparison Calibration         4       ChAPTER 25         CALIBRATION       Input CALIBRATION         INPUT CALIBRATION       Input CALIBRATION         INPUT CALIBRATION       Input Calibrate mV Range         1       To Calibrate mV Range         2       To Save the New Calibration Data | 186<br>186<br>186<br>187<br>188<br>189<br>189<br>190<br>191<br>192<br>193<br>193<br>193<br>193<br>194<br>195<br>196<br>198<br>198<br>200<br>200<br>200<br>201<br>201<br>202<br>202 |

Part No HA027988 Issue 3.0 Aug-04



6.

|          | TAFTER 20 CONFIGURATION USING ITOULS             | ∠Uð |
|----------|--------------------------------------------------|-----|
| 26.1     | FEATURES                                         |     |
| 26.2     | ON-LINE/OFF-LINE EDITING                         |     |
| 26.3     | CONNECTING A PC TO THE CONTROLLER                |     |
| 26.4     | PARAMETER SET UP                                 |     |
| 26.5     | DEVICE PANEL                                     |     |
| 26.6     | USER PAGES EDITOR                                |     |
| 26.6.1   | To Create a User Page                            |     |
| 26.6.2   | Style Examples                                   |     |
| 26.7     | RECIPE EDITOR                                    |     |
| 26.7.1   | Recipe Menu Commands                             |     |
| 26.8     | TO SET UP ALARMS USING ITOOLS                    |     |
| 26.8.1   | Example: To Customise Analogue Alarm Messages    |     |
| 26.8.2   | Alarm Summary Page in iTools                     |     |
| 26.8.3   | To Customise Digital Alarm Messages              |     |
| 26.9     | PROGRAM EDITOR                                   |     |
| 26.9.1   | Analog View                                      |     |
| 26.9.2   | Event Outputs                                    |     |
| 26.9.3   | The Spreadsheet                                  |     |
| 26.9.4   | Menu Entries and Tool Buttons                    |     |
| 26.9.5   | The Context Menu                                 |     |
| 26.9.6   | Naming Programs                                  |     |
| 26.9.7   | Entering a Program                               |     |
| 26.9.8   | Making Changes to a Program                      |     |
| 26.9.9   | Saving Programs                                  |     |
| 26.9.10  | Moving Programs Around                           |     |
| 26.9.11  | Printing a Program                               |     |
| 26.10    | GRAPHICAL WIRING EDITOR                          |     |
| 26.10.2  | Using Function Blocks                            |     |
| 26.10.3  | Tooltips                                         |     |
| 26.10.4  | Series 3000 Instruments                          |     |
| 26.10.5  | Using Wires                                      |     |
| 26.10.6  | Using Comments                                   |     |
| 26.10.7  | Using Monitors                                   |     |
| 26.10.8  | Downloading To Series 3000 Instruments           |     |
| 26.10.9  | Selections                                       |     |
| 26.10.10 | Colours                                          |     |
| 26.11    | DIAGRAM CONTEXT MENU                             |     |
| 26.11.1  | Other Examples of Graphical Wiring               |     |
| 26.12    | CLONING                                          |     |
| 26.12.1  | Save to File                                     |     |
| 26.12.2  | To Clone a New Controller                        |     |
| 26.12.3  | To Clone Directly from One Controller to Another |     |
| 27 🗠     |                                                  | 234 |
|          |                                                  | 204 |

#### 29. APPENDIX C TECHNICAL SPECIFICATION ...... 254

| 29.1.1 | Control Options            |     |
|--------|----------------------------|-----|
| 29.1.2 | Display                    |     |
| 29.1.3 | Standard Digital I/O       |     |
| 29.1.4 | All Analogue and PV Inputs | 255 |
| 29.1.5 | PV Input                   |     |
|        | 1                          |     |

Aug-04 Part No HA027988 Issue 3.0



| 29.1.6  | Analogue Input Module   | 256 |
|---------|-------------------------|-----|
| 29.1.7  | Digital Input Modules   | 257 |
| 29.1.8  | Digital Output Modules  | 257 |
| 29.1.9  | Analogue Output Modules | 257 |
| 29.1.10 | Transmitter PSU         | 257 |
| 29.1.11 | Transducer PSU          | 257 |
| 29.1.12 | Potentiometer Input     | 257 |
| 29.1.13 | Digital communications  | 257 |
| 29.1.14 | Master communications   | 257 |
| 29.1.15 | Alarms                  | 257 |
| 29.1.16 | Control Functions       | 258 |
| 29.1.17 | Setpoint Programmer     | 258 |
| 29.1.18 | I/O Expander            | 258 |
| 29.1.19 | Advanced Functions      | 259 |
| 29.1.20 | General Specification   | 259 |
|         |                         |     |

#### 

### Issue Status of This Manual

Issue 3.0 of this manual applies to software version 1.2.

### Notes about this handbook:-

- 1. Chapter 1 Installation and Operation, Part Number HA027987, is essentially the same as the User Handbook, supplied with the product.
- 2. Further chapters describe configuration of the controller and operation in level 3. The order of chapters is the same order as the subject headers presented in the controller.
- 3. Related handbooks, all of which can be downloaded from <u>www.eurotherm.co.uk</u>, may be useful for further information
  - a. EMC booklet Part No. HA025464
  - b. 2000 Series Communications Part No. HA026230
  - c. DeviceNet Communications Part No. HA027506
  - d. Profibus Communications Part No. HA026290
  - e. IO Expander Part No. HA026893
- 4. Whenever the symbol 🕲 appears in this handbook it indicates a helpful hint



Aug-04

Part No HA027988 Issue 3.0

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

# 3508 and 3504 Process Controllers

## 1. CHAPTER 1 INSTALLATION AND OPERATION

#### What Instrument Do I Have? 1.1

Thank you for choosing this Controller.

The 3508 controller is supplied in the standard 1/8 DIN size (48 x 96mm front panel). The 3504 controller is supplied in the standard ¼ DIN size (96 x 96mm front panel). They are intended for permanent installation, for indoor use only, in an electrical panel which encloses the rear housing, terminals and wiring on the back.

#### 1.1.1 **Contents of Package**

When unpacking your controller please check that the following items have been included.

#### 1.1.1.1 3508 or 3504 Controller Mounted in its Sleeve

The 3504 contains up to six plug-in hardware modules; the 3508 has up to three. Additionally digital communications modules can be fitted in two positions.

The modules provide an interface to a wide range of plant devices and those fitted are identified by an ordering code printed on a label fixed to the side of the instrument. Check this against the description of the code given in section 1.2 to ensure that you have the correct modules for your application. This code



3508 Controller



3504 Controller

also defines the basic functionality of the instrument which may be:-





- Controller only
- Programmer and controller
- Control type Standard PID, valve positioner
- Digital communications type
- Options

1.1.1.2 **Panel Retaining Clips** 

Two clips are required to secure the instrument sleeve in the panel. These are supplied fitted to the sleeve.

#### 1.1.1.3 **Accessories Pack**

For each input a load resistor value  $2.49\Omega$  is supplied for mA measurement. This will need to be fitted across the respective input terminals

A User Guide Part No HA027987. This guide is repeated here as Chapter 1 and explains:-

- How to install the controller
- Physical wiring to the plant devices
- First switch on 'out of the box'.
- Principle of operation using the front panel buttons
- Introduction to configuration through iTools PC software



#### 3504 and 3508 Ordering Code 1.2

| Mo<br>Num    | del<br>1ber        | Function     | Suj<br>Vol | oply<br>tage    | No of<br>Loops | A                       | Applic                 | ation   | Programs | Reci | pes         | T        | Foolkit<br>Wires | Colour |            |    |
|--------------|--------------------|--------------|------------|-----------------|----------------|-------------------------|------------------------|---------|----------|------|-------------|----------|------------------|--------|------------|----|
| Model Number |                    | Model Number |            | Model Number Si |                | upply V                 | oltage                 |         |          | Pr   | ograms      |          |                  | Тс     | oolkit Wir | es |
| 3504         | 3504 3504 Standard |              | VH         | 100-2           | 40Vac          |                         | 01 1 prog 5 segments   |         |          | XX   | XX 30 wires |          | s                |        |            |    |
| 3508         | 3508 3508 Standard |              | VL         | 20-29           | Vac/dc         |                         | 10 10 prog 50 segments |         |          | 60   |             | 60 wires |                  |        |            |    |
|              |                    |              |            |                 |                | 25 25 prog 100 segments |                        | ts      | 120      |      | 120 wires   |          |                  |        |            |    |
|              | Function           |              | Loops      |                 |                | 50                      | 50 prog 200 segments   |         | s        | 25   | 250 250 wi  |          |                  |        |            |    |
| Null         | Null Controller    |              | 1          | Single          | :              |                         | 50                     | 50 p.   | <u> </u> |      | 23          | 0        | 250 101          | 0      |            |    |
| F            | F Profibus         |              |            |                 |                |                         |                        |         |          |      |             |          | Colour           |        |            |    |
| controller   |                    |              |            |                 |                |                         | F                      | Recipes |          | G    |             | Furother | n                |        |            |    |
|              |                    |              |            | Applica         | ation          |                         | 1                      | 1 re    | cipe     |      | -           | -        | green            |        |            |    |
|              |                    |              | XX         | Stand           | ard            |                         | 4                      | 4 re    | cipes    |      | S           |          | Silver           |        |            |    |
|              |                    |              | VP         | Valve           | Position       |                         | 8                      | 8 re    | cipes    |      | -           |          |                  |        |            |    |
|              |                    |              | ZC         | Zircor          | nia            |                         |                        |         | •        |      |             |          |                  |        |            |    |

#### 1.2.1 Input and Output Modules

|              |    |          |            |           | 3504 only |           |          |    |             |
|--------------|----|----------|------------|-----------|-----------|-----------|----------|----|-------------|
| IO Slot 1    | IC | O Slot 2 | IO Slot 3  | IO Slot 4 | IO Slot 5 | IO Slot 6 | Comms H  | 1  | Comms J     |
|              |    |          |            |           |           |           |          |    |             |
| Config Tools |    | Produc   | t Language | Manuals I | anguage   | Warranty  | Cal Cert | Cu | istom Label |

| IO | Slots 1-3 (3508); 1-6 (3504)  |    | H Comms Slot          | Config Tools |               | Extended Warranty |                  |
|----|-------------------------------|----|-----------------------|--------------|---------------|-------------------|------------------|
| XX | None fitted                   | XX | Not Fitted            | XX           | None          | WL005             | Extended 5 year  |
| R4 | Change over relay             | A2 | 232 Modbus            | IT           | Standard      |                   |                  |
| R2 | 2 pin relay                   | Y2 | 2-wire 485 Modbus     |              | iTools        | Ca                | al Certificate   |
| RR | Dual relay                    | F2 | 4-wire 485 Modbus     | Instru       | ment language | XXXXX             | None             |
| T2 | Triac                         | AE | 232 El-Bisynch        | FNG          |               | CAL1              | Cert of          |
| TT | Dual triac                    | YE | 2-wire 485 EI-Bisynch | FRA          | French        |                   | Eactory cal cert |
| D4 | DC control                    | FE | 4-wire 485 EI-Bisynch | GER          | German        |                   | Custom Cal Cert  |
| AM | Analogue input (not slot 2 or | ET | Ethernet 10base       | SPA          | Spanish       | CALJ              | custom car cert  |
|    | 5)                            | РВ | Profibus              |              | Spanish       | Cı                | istom Labels     |
| D6 | DC retransmission             | DN | Devicenet             |              |               | F1234             | Special No       |
| TL | Triple logic input            |    |                       | Mar          | uals Language | XXXXX             | None             |
| ТК | Triple contact input          |    | J Comms Slot          | ENG          | English       | 700000            | Hone             |
| ТР | Triple logic output           | XX | Not Fitted            | FRA          | French        | Non-s             | standard Option  |
| VU | Potentiometer input           | A2 | 232 Modbus            | GER          | German        | EU1234            | Special No       |
| MS | 24Vdc transmitter PSU         | Y2 | 2-wire 485 Modbus     | SPA          | Spanish       | EC1234            | Custom curve     |
| G3 | Transducer PSU 5 or 10Vdc     | F2 | 4-wire 485 Modbus     |              |               | EE1234            | Custom config    |
| LO | Isolated single logic output  | EX | IO Expander           | XXX          | None          | ES1234            | Cust software    |

#### 3504/VH/1/XX/10/4/60/G/TT/XX/XX/XX/XX/XX/Y2/XX/IT/ENG/ENG/WL003/XXXX Example

3504 CONTROLLER, 100-240Vac, 10 programs, 4 recipes, 60 wires, dual triac output, 2-wire J485 comms, iTools, English manual

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

### 1.3 How to Install the Controller

This instrument is intended for permanent installation, for indoor use only, and to be enclosed in an electrical panel.

Select a location where minimum vibrations are present and the ambient temperature is within 0 and 50°C (32 and 122°F).

The instrument can be mounted on a panel up to 15mm thick.

To assure IP65 and NEMA 4 front protection, use a panel with smooth surface texture.

Please read the safety information, Appendix B, before proceeding and refer to the EMC Booklet part number HA025464 for further information.

### 1.3.1 Dimensions





2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

### 1.3.2 To Install the Controller

### 1.3.2.1 Panel Cut-out

- 1. Prepare the panel cut-out to the size shown in the diagram
- 2. Insert the controller through the cutout.
- 3. Spring the panel retaining clips into place. Secure the controller in position by holding it level and pushing both retaining clips forward.
- 4. Peel off the protective cover from the display



### 1.3.2.2 Recommended Minimum Spacing

5. The recommended minimum spacing between controllers shown here should not be reduced to allow sufficient natural air flow



### 1.3.3 Unplugging the Controller

The controller can be unplugged from its sleeve by easing the latching ears outwards and pulling it forward out of the sleeve. When plugging it back into its sleeve, ensure that the latching ears click back into place to maintain the IP65 sealing.



### 1.4 Electrical Connections

### 3508

3504



### \* Polarising Key

Polarising keys are intended to prevent modules which are not supported in this controller from being fitted into the controller. An example might be an unisolated module (coloured red) from a 2400 controller series. When pointing towards the top, as shown, the key prevents a controller, fitted with an unsupported module, from being plugged into a sleeve which has been previously wired for isolated modules. If an unisolated module is to be fitted, it is the users responsibility to ensure that it is safe to install the controller in the particular application. When this has been verified the polarising key may be adjusted with a screwdriver to point in the down direction.

Polarising Keys \* One per module

### 1.4.1 Wire Sizes

The screw terminals accept wire sizes from 0.5 to 1.5 mm (16 to 22AWG). Hinged covers prevent hands or metal making accidental contact with live wires. The rear terminal screws should be tightened to 0.4Nm (3.5lb in).



### 1.5 Standard Connections

These are connections which are common to all instruments in the range.

### 1.5.1 PV Input (Measuring Input)

Notes:

- 1. Do not run input wires together with power cables
- 2. When shielded cable is used, it should be grounded at one point only
- Any external components (such as zener barriers, etc) connected between sensor and input terminals may cause errors in measurement due to excessive and/or un-balanced line resistance or possible leakage currents
- 4. Not isolated from the logic outputs and digital inputs

### 1.5.1.1 Thermocouple or Pyrometer Input



Use the correct type of thermocouple compensating cable, preferably shielded, to extend wiring

### 1.5.1.2 RTD Input

T/C



### 1.5.1.3 Linear Input V, mV and High Impedance V



| mV range +40mV or +80mV                                           |
|-------------------------------------------------------------------|
| High level range 0 – 10V                                          |
| High Impedance mid level range 0 – 2V                             |
| A line resistance for voltage inputs may cause measurement errors |

### 1.5.1.4 Linear Input mA



Connect the supplied load resistor equal to  $2.49\Omega$  for mA input The resistor supplied is 1% accuracy 50ppm A resistor 0.1% accuracy 15ppm resistor can be supplied as an orderable option

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

#### 1.5.2 Digital I/O

These terminals may be configured as logic inputs, contact inputs or logic outputs in any combination. It is possible to have one input and one output on either channel.



### The Digital IO is not isolated from the PV input

#### 1.5.2.1 **Logic Inputs**

|              | Voltage level logic inputs, 12V, 5-40mA |
|--------------|-----------------------------------------|
|              |                                         |
| (LB) Input 2 | Active > 10.8V                          |
|              | Inactive $< 7.3V$                       |
| (LC) Common  | Indetive 47.5V                          |

#### 1.5.2.2 **Contact Closure Inputs**

| LA Input 1  |                              |
|-------------|------------------------------|
|             | Contact open > 1200 $\Omega$ |
|             | Contact closed < $480\Omega$ |
| (LC) Common |                              |

#### 1.5.3 **Digital (Logic) Outputs**

| LA Output 1   | The logic outputs are capable of driving SSR or thyristors up to 9mA, 18V |
|---------------|---------------------------------------------------------------------------|
| LB → Output 2 | It is possible to parallel the two outputs to supply 18mA, 18V.           |
| Common        | Note : The Digital IO terminals are not isolated from the PV.             |

| 1.5.4 | Relay Output |                               |                          |
|-------|--------------|-------------------------------|--------------------------|
|       | _▲           | Relay rating, min: 1V, 1mAdc. | Max: 264Vac 2A resistive |
|       |              | Relay shown in de-energised s | state                    |
|       |              | Isolated output 240Vac CATII  |                          |

#### 1.5.4.1 **General Note About Inductive Loads**

High voltage transients may occur when switching inductive loads such as some contactors or solenoid valves.

For this type of load it is recommended that a 'snubber' is connected across the normally open contact of the relay switching the load. The snubber typically consists of a 15nF capacitor connected in series with a  $100\Omega$  resistor and will also prolong the life of the relay contacts.

/!\ When the relay contact is open and it is connected to a load, the snubber passes a current (typically 0.6mA at 110Vac and 1.2mA at 240Vac. It is the responsibility of the installer to ensure that this current does not hold on the power to an electrical load. If the load is of this type the snubber should not be connected.





Aug-04

Part No HA027988 Issue 3.0

#### 1.5.5 **Power Supply Connections**

### $(\mathbf{L})$ 100 to 240Vac 50/60Hz N

| 24 | 24V ac or dc |
|----|--------------|
| 24 |              |
|    |              |

- 1. Before connecting the instrument to the power line, make sure that the line voltage corresponds to the description on the identification label
- 2. For supply connections use 16AWG or larger wires rated for at least 75°C
- 3. Use copper conductors only
- For 24V the polarity is not important 4.
- 5. It is the Users responsibility to provide an external fuse or circuit breaker.

For 24 V ac/dc fuse type T rated 4A 250V

For 100/240Vac fuse type T rated 1A 250V

Safety requirements for permanently connected equipment state:

- a switch or circuit breaker shall be included in the building installation
- it shall be in close proximity to the equipment and within easy reach of the operator
- it shall be marked as the disconnecting device for the equipment ٠

Note: a single switch or circuit breaker can supply more than one instrument

Part No HA027988 Aug-04 Issue 3.0



### 1.6 Plug in I/O Module Connections

Plug in I/O modules can be fitted in three positions in the 3508 and six positions in 3504. The positions are marked Module 1, Module 2, Module 3, Module 4, Module 5, Module 6. With the exception of the Analogue Input module, any other module listed in this section, can be fitted in any of these positions. To find out which modules are fitted check the ordering code printed on a label on the side of the instrument. If modules have been added, removed or changed it is recommended that this is recorded on the instrument code label.

The function of the connections varies depending on the type of module fitted in each position and this is shown below. All modules are isolated.

### 1.6.1 I/O Modules

| I/O Module                                                                  | Typical<br>usage                                                                    | H/W<br>Code  | Connections and examples of use                                                                                                                                                                                                                      |  |  |  |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Note: The order code and terminal number is pre-fixed by the module number. |                                                                                     |              |                                                                                                                                                                                                                                                      |  |  |  |
| Module 1 is co                                                              | Module 1 is connected to terminals 1A, 1B, 1C, 1D; module 2 to 2A, 2B, 2C, 2D, etc. |              |                                                                                                                                                                                                                                                      |  |  |  |
| Relay (2 pin)<br>and<br>Dual Relay<br>2A, 264Vac<br>max<br>1mA 1V min       | Heating,<br>cooling,<br>alarm,<br>program<br>event,<br>valve raise,<br>valve lower  | R2 and<br>RR | Contactor       First relay         Relay       A         Panel lamp       Voltage         etc       Voltage         Supply       C         Panel lamp       D         etc       Second relay (dual relay only)         Isolated output 240Vac CATII |  |  |  |
| Change Over<br>Relay<br>(2A, 264Vac<br>max)<br>1mA 1V min                   | Heating,<br>cooling,<br>alarm,<br>program<br>event, valve<br>raise, valve<br>lower  | R4           | Contactor<br>Relay<br>Panel lamp<br>etc<br>Voltage<br>supply<br>C<br>D                                                                                                                                                                               |  |  |  |
| Triple Logic<br>Output<br>(18Vdc at<br>8mA max.)                            | Heating,<br>cooling,<br>program<br>events                                           | TP           | SSR or<br>thyristor<br>unit<br>Isolated output 240Vac CATII                                                                                                                                                                                          |  |  |  |
| Isolated<br>Single Logic<br>Output                                          | Heating,<br>cooling,<br>program<br>events                                           | LO           | + Output A + A J<br>SSR or<br>thyristor<br>unit - C<br>Common - X<br>Isolated output 240Vac CATII                                                                                                                                                    |  |  |  |



Aug-04

Part No HA027988 Issue 3.0

| Triac<br>and Dual<br>Triac<br>(0.7A, 30 to<br>264Vac<br>combined<br>rating) | Heating,<br>cooling,<br>valve raise,<br>valve lower                                 | T2<br>and TT | Raise       First triac         Motorised       Supply         Valve       Second triac         Note 1: Dual relay modules may be used in place of dual triac.         Isolated output 240Vac CATII         Note 2:-         The combined current rating for the two triacs must not exceed 0.7A. |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I/O Module                                                                  | Typical<br>usage                                                                    | H/W<br>Code  | Connections and examples of use                                                                                                                                                                                                                                                                   |
| DC Control<br>(10Vdc,<br>20mA max)                                          | Heating,<br>cooling<br>e.g. to a<br>4-20mA<br>process<br>actuator                   | D4           | Actuator<br>0-20mA<br>or<br>0-10Vdc<br>Isolated output 240Vac CATII                                                                                                                                                                                                                               |
| DC Re-<br>transmission<br>(10Vdc,<br>20mA max)                              | Logging of<br>PV, SP,<br>output<br>power, etc.,<br>(0 to 10Vdc,<br>or<br>0 to 20mA) | D6           | To other<br>controllers<br>0-20mA<br>or<br>0-10Vdc<br>Isolated output 240Vac CATII                                                                                                                                                                                                                |
| Triple Logic<br>Input                                                       | Events<br>e.g. Program<br>Run, Reset,<br>Hold                                       | TL           | Logic inputs Input 1<br><5V OFF Input 2<br>>10.8V ON<br>Limits:<br>-3V, +30V<br>Input 240Vac CATII                                                                                                                                                                                                |
| Triple<br>Contact<br>Input                                                  | Events<br>e.g. Program<br>Run, Reset,<br>Hold                                       | ТК           | External<br>Switches or<br>Relays<br>Contact<br>inputs<br><100Ω ON<br>>28KΩ OFF<br>Isolated output 240Vac CATII                                                                                                                                                                                   |





20.



Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

### 1.6.2 Zirconia Probe Construction



### 1.6.3 Zirconia Probe Screening Connections

The zirconia sensor wires should be screened and connected to the outer shell of the probe if it is situated in an area of high interference.



22.

Issue 3.0

Aug-04

Part No HA027988

### 1.7 Digital Communications Connections

Digital Communications modules can be fitted in two positions in both 3508 and 3504 controllers. The connections being available on HA to HF and JA to JF depending on the position in which the module is fitted. The two positions could be used, for example, to communicate with 'iTools' configuration package on one position, and to a PC running a supervisory package on the second position.

Communications protocols may be ModBus, ElBisynch, DeviceNet, Profibus or Ethernet.

Note:- In order to reduce the effects of RF interference the transmission line should be grounded at both ends of the screened cable. However, if such a course is taken care must be taken to ensure that differences in the earth potentials do not allow circulating currents to flow, as these can induce common mode signals in the data lines. Where doubt exists it is recommended that the Screen (shield) be grounded at only one section of the network as shown in all of the following diagrams.

### 1.7.1 Modbus Slave (H or J Module) or ElBisynch

A further description of ModBus and ElBisynch communications is given in 2000 series Communications Handbook, Part No. HA026230.



• Digital communications modules isolated 240Vac CATII







### 1.7.2 Devicenet Wiring

A description of DeviceNet is given in the DeviceNet Communications Handbook Part No HA027506 which can be downloaded from www.eurotherm.co.uk.

| Terminal<br>Reference | CAN<br>Label | Color<br>Chip | Description                                                                                                                                                                                                                |
|-----------------------|--------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| НА                    | V+           | Red           | DeviceNet network power positive terminal. Connect the red wire of the DeviceNet cable here. If the DeviceNet network does not supply the power, connect to the positive terminal of an external 11-25 Vdc power supply.   |
| НВ                    | CAN_H        | White         | DeviceNet CAN_H data bus terminal. Connect the white wire of the DeviceNet cable here.                                                                                                                                     |
| НС                    | SHIELD       | None          | Shield/Drain wire connection. Connect the DeviceNet cable shield here. To prevent ground loops, the DeviceNet network should be grounded in only one location.                                                             |
| HD                    | CAN_L        | Blue          | DeviceNet CAN_L data bus terminal. Connect the blue wire of the DeviceNet cable here.                                                                                                                                      |
| HE                    | V-           | Black         | DeviceNet network power negative terminal. Connect the black wire of the DeviceNet cable here. If the DeviceNet network does not supply the power, connect to the negative terminal of an external 11-25 Vdc power supply. |
| HF                    |              |               | Connect to instrument earth                                                                                                                                                                                                |



Note: Power taps are recommended to connect the DC power supply to the DeviceNet trunk line. Power taps include:

A Schottky Diode to connect the power supply V+ and allows for multiple power supplies to be connected.

2 fuses or circuit breakers to protect the bus from excessive current which could damage the cable and connectors.

The earth connection, HF, to be connected to the main supply earth terminal.

### 1.7.3 Example Devicenet Wiring Diagram



Part No HA027988 Issue 3.0 Aug-04



24.

2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

### 1.7.4 Profibus

A description of ProfiBus is given in the Profibus Communications Handbook Part No HA026290 which can be downloaded from <u>www.eurotherm.co.uk</u>.

### 1.7.5 Example Profibus Wiring



### 1.7.6 Ethernet

When the controller is supplied with the Ethernet communications option a special cable assembly is also supplied. This cable must be used since the magnetic coupling is contained within the RJ45 connector. It consists of an RJ45 connector (socket) and a termination assembly which must be connected to terminals HA to HF.



Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

### 1.7.7 I/O Expander (or Additional Digital Input)

An I/O expander (Model No 2000IO) can be used with 3500 series controllers to allow the number of I/O points to be increased by up to a further 20 digital inputs and 20 digital outputs. Data transfer is performed serially via an IO Expander module which is fitted in digital communications slot J.



For details of the IO Expander refer to the Operating Instructions HA026893. The connections for this unit are reproduced below for convenience.





26.

2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

### 1.7.8 Example Wiring Diagram



Please refer to the EMC Electromagnetic Compatibility Handbook Part No. HA025464 for details of good wiring practice. This can be downloaded from <u>www.eurotherm.co.uk</u>.

### 1.7.9 Snubbers

Snubbers are used to prolong the life of relay contacts and to reduce interference when switching inductive devices such as contactors or solenoid valves. The fixed relay (terminals AA/AB/AC) is not fitted internally with a snubber and it is recommended that a snubber be fitted externally, as shown in the example wiring diagram. If the relay is used to switch a device with a high impedance input, no snubber is necessary.

All relay modules are fitted internally with a snubber since these are generally required to switch inductive devices. However, snubbers pass 0.6mA at 110V and 1.2mA at 230Vac, which may be sufficient to hold on high impedance loads. If this type of device is used it will be necessary to remove the snubber from the circuit.

The snubber is removed from the relay module as follows:-

- 1. Unplug the controller from its sleeve
- 2. Remove the relay module
- 3. Use a screwdriver or similar tool to snap out the track. The view below shows the tracks in a Dual Relay Output module.



Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

### 1.8 Getting Started

A brief start up sequence consists of a self test in which all elements of the display are illuminated and the software version is shown. What happens next depends on one of two conditions;-

- 1. Power up out of the box when the controller has no preset configuration and is switched on for the very first time it will start up in 'QuickStart mode. This is an intuitive tool for configuring the controller and is described in section 1.9 below.
- 2. The controller has been powered up previously and is already configured. In this case go to section 1.11.

### 1.9 Quick Start - New Controller (Unconfigured)

When the controller is switched on for the very first time it will display the 'Startup' screen shown below.



\* Manual mode is always selected when in Quick Start mode because the controller resets to cold start when Quick Start is selected.

Controller Display 3504 3508

### 1.9.1 To Configure Parameters in Quick Start Mode

Press  $\bigcirc$  or  $\bigcirc$  to select Quick Start Mode or Configuration Mode. **'Config'** will allow you to enter full configuration mode, covered in detail in later sections of this handbook.

Press  $\bigcirc$  to scroll through the list of parameters

Edit the parameters using the ightarrow or ightarrow buttons

Each time  $\bigcirc$  button is pressed a new parameter will be presented

This is illustrated by the following example:- (The views shown are taken from the 3508 controller but the same information is included in the 3504).

 $\bigcirc$  Backscroll – to scroll back through parameters press and hold  $\bigcirc$  then press O to go back through the list of parameters. You can also press and hold  $\bigcirc$  + O to go forward - this has the same effect as pressing  $\bigcirc$  alone.

Issue 3.0

Aug-04

Part No HA027988



|    | Example                                                                                              |                   |                                                                                                                                                                                                                                       |
|----|------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Do This                                                                                              | Display           | Additional Notes                                                                                                                                                                                                                      |
| 1. | From the Start view press                                                                            | Init              | The first parameter to be configured is <b>'Units'</b> . It resides in the <b>'PV Input List'</b> because it is associated with the process variable.                                                                                 |
| 2. | Press or $\mathbf{\nabla}$ to change the <b>'Units'</b>                                              | PU Input<br>Units | When the required choice is selected a brief blink of the display indicates that it has been accepted                                                                                                                                 |
| 3. | A different parameter is selected each time $\bigcirc$ is pressed.                                   | 44                |                                                                                                                                                                                                                                       |
| 4. | Continue setting up the<br>parameters presented until<br>the <b>'Finished'</b> view is<br>displayed. | Finished          | If you wish to scroll around the parameters again do<br>not select Yes but continue to press .<br>When you are satisfied with the selections select 'Yes'.<br>The display will then show the 'HOME' display shown<br>in section 1.11. |
| 5. | If all parameters are set up<br>as required press  are<br>to <b>'Yes'</b>                            | #No               |                                                                                                                                                                                                                                       |

The following table summarises all the parameters which can be set up by the above procedure.



### 1.9.2 Quick Start Parameters

Parameters shown in **Bold** are defaults.

| Group    | Parameter                                                                                                | Value                                                                                                                                                        | Availability                                                       |
|----------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| PV Input | Units<br>Used to select the engineering units for<br>the PV                                              | C, F, K<br>V. mV, A, mA, pH, mmHg, psi, Bar,<br>mBar, %RH, %, mmWG, inWG, inWW,<br>Ohms, PSIG, %O2, PPM, %CO2, %CP,<br>%/sec, mBar/Pa/T, sec, min, hrs, None | Always                                                             |
| PV Input | Resolution<br>Used to select the required decimal<br>point position for the PV                           | <b>XXXXX</b> , XXXX.X, XXX.XX, XX.XXX,<br>X.XXXX                                                                                                             | Always                                                             |
| PV Input | Range Type<br>Used to select the linearisation<br>algorithm required and the input<br>sensor.            | Thermocouple: J, <b>K</b> , L, R, B, N, T, S,<br>PL2, C.<br>RTD: Pt100<br>Linear: 0-50mV, 0-5V, 1-5V, 0-10V, 2-<br>10V, 0-20mA, 4-20mA                       | Always                                                             |
| PV Input | Range High<br>Configures the maximum display range<br>and SP limits                                      | Depends on Range type selected.<br>Default <b>1200</b>                                                                                                       | Always                                                             |
| PV Input | Range Low<br>Configures the minimum display range<br>and SP limits                                       | Depends on Range type selected.<br>Default <b>0</b>                                                                                                          | Always                                                             |
| Loop     | Control Channel 1                                                                                        | PID, VPU, VPB, Off, OnOff                                                                                                                                    | Always                                                             |
|          | Sets the control type for channel 1<br>(normally Heat)                                                   |                                                                                                                                                              |                                                                    |
| Loop     | Control Channel 2                                                                                        | PID, VPU, VPB, <b>Off,</b> OnOff                                                                                                                             | Always                                                             |
|          | Sets the control type for channel 2 (normally Cool)                                                      |                                                                                                                                                              |                                                                    |
| LgcIO LA | Logic OP (or IP) function                                                                                | Not Used, Chan 1, Chan 2, Alarm 1                                                                                                                            | [Note 1]                                                           |
|          | The LA Logic I/O port can be an output                                                                   | to 8, Any Alarm, New Alarm,<br>ProgEvnt1 to 8, (outputs)                                                                                                     | [Note 2]                                                           |
|          | select its function.                                                                                     | Auto Man, AlarmAck, ProgRun,<br>ProgReset, ProgHold (Inputs)                                                                                                 |                                                                    |
| LgcIO LA | Min OnTime                                                                                               | Auto                                                                                                                                                         | Only appears if Control Channel                                    |
|          | This applies to both LA and LB inputs                                                                    | 0.01 to 150.00                                                                                                                                               | = VPB and the channel is<br>allocated to the LA output<br>[Note 2] |
| LgcIO LB | Logic OP (or IP) function                                                                                | Not Used                                                                                                                                                     | Only appears if Control Channel                                    |
|          | The LB Logic I/O port can be an output<br>or an input. This parameter is used to<br>select its function. | All parameters the same as LA I/O                                                                                                                            | = VPB and the channel is<br>allocated to the LB output<br>[Note 2] |
| RlyOP    | Relay function                                                                                           | Not Used, Chan 1, Chan 2, Alarm 1                                                                                                                            | Always.                                                            |
| AA       | This relay is always fitted.                                                                             | to 8, Any Alarm, New Alarm,<br>ProgEvnt1 to 8                                                                                                                | [Note 3]                                                           |

 Note 1)
 Parameters only appear if the function has been turned on, eg If 'Control Channel 1' = 'Off', 'Chan 1' does not appear in this list. When a control channel is configured for valve positioning, LgcIO LA and LgcIO LB act as a complementary pair. If, for example, Chan 1 is connected to LgcIO LA (valve raise) then LgcIO LB is automatically set to Chan 1 (valve lower). This ensures the valve is never raised and lowered simultaneously.

The same complementary behaviour also applies to dual output modules and channels A and C of triple output modules

Note 2) If any input function, for example Chan 1, is connected to another input it will not appear in this list

Note 3) For valve position control Chan 1 or Chan 2 will not appear in this list. Valve position outputs can only be dual outputs such as LA and LB or dual relay/triac output modules



### Modules

The following parameters configure the plug in I/O modules. I/O Modules can be fitted in any available slot in the instrument (6 slots in 3504, 3 slots in 3508). The controller automatically displays parameters applicable to the module fitted - if no module is fitted in a slot then it does not appear in the list.

Each module can have up to three inputs or outputs. These are shown as A, B or C after the module number and this corresponds to the terminal numbers on the back of the instrument. If the I/O is single only A appears. If it is dual A and C appears if it is triple A, B and C appear.

| Module type               | Parameter          |                                     | Value                            | Availability                       |
|---------------------------|--------------------|-------------------------------------|----------------------------------|------------------------------------|
| Change over relay (R4)    | Relay (Triac)      | Not Used                            |                                  | Always (if the module              |
| 2 pin relay (R2)          | function           | All parameters the same as RlyOP AA |                                  | is fitted)                         |
| Triac output (T2)         |                    |                                     |                                  |                                    |
| Dual Relay (RR)           | Relay (Triac)      | Not Used                            |                                  | Always (if the module              |
| Dual triac output (TT)    | function           | All paramete                        | ers the same as RlyOP AA         | is fitted)                         |
|                           | Relay function     | Not Used                            |                                  | Always (if the module              |
|                           | -                  | All paramete                        | ers the same as RlyOP AA         | is fitted)                         |
| Single Logic Output (LO)  | Logic Out function | Not Used                            |                                  | Always (if the module              |
|                           |                    | All parameters the same as RlyOP AA |                                  | is fitted)                         |
| Triple Logic Output (TP)  | Logic OP function  | Not Used                            |                                  | Always (if the module              |
|                           |                    | All paramete                        | ers the same as RlyOP AA         | is fitted)                         |
| DC Output (D4)            | DC Output          | Not Used                            | Module fitted but not configured | Always (if the module              |
| DC Retransmission (D6)    | function           | Chan 1                              | Channel 1 control output         | is fitted)                         |
|                           |                    | Chan 2                              | Channel 2 control output         |                                    |
|                           |                    | SP Retran                           | Setpoint retransmission          |                                    |
|                           |                    | PV Retran                           | Process variable retransmission  |                                    |
|                           |                    | ErrRtran                            | Error Retransmission             |                                    |
|                           |                    | PwrRtran                            | Power output retransmission      |                                    |
|                           | Range Type         | <b>0–5V,</b> 1-5V,                  | 1–10V, 2–10V, 0-29mA, 4-20mA     |                                    |
|                           | Display High       | 100.0                               |                                  |                                    |
|                           | Display Low        | 0                                   |                                  |                                    |
| Triple Logic Input (TL)   | Logic Input        | Not Used                            | Module fitted but not configured | A function can only be             |
| Triple Contact Input (TK) | function           | Auto Man                            | Auto/manual                      | allocated to one input.            |
|                           |                    | AltSP Sel                           | Alternative SP select            | configured on X*A it is            |
|                           |                    | AlarmAck                            | Alarm acknowledge                | not offered for the                |
|                           |                    | ProgRun                             | Programmer run                   | other inputs                       |
|                           |                    | ProgReset                           | Programmer reset                 | * is the module                    |
|                           |                    | ProgHold                            | Programmer hold                  | number                             |
| Analogue Input (AM)       | Analogue IP        | Not Used                            | Module fitted but not configured | ch1VlvPos and                      |
|                           | function           | Loop PV                             | Loop process variable            | ch2VlvPos only appear              |
|                           |                    | Remote SP                           | Remote setpoint                  | 1 or control channel 2             |
|                           |                    | RemOPH                              | Remote output power maximum      | is set to VPB.                     |
|                           |                    | RemOPL                              | Remote output power minimum      | Remote SP does not                 |
|                           |                    | ch 1) //D = -                       | To read value perities from      | appear if the programmer option is |
|                           |                    | CHIVIVPOS                           | feedback potentiometer           | supplied                           |
|                           |                    | ch2VlvPos                           |                                  |                                    |



| Module type                      | Parameter                                                  |                                                                                                                                     | Value                                                                                                                                                                                              | Availability                                                                                                                          |
|----------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                                  | Range Type                                                 | Thermocouple: J, <b>K</b> , L, R, B, N, T, S, PL2, C.<br>RTD: Pt100<br>Linear: 0-50mV, 0-5V, 1-5V, 0-10V, 2-10V, 0-<br>20mA, 4-20mA |                                                                                                                                                                                                    | Not shown if analogue<br>IP function not used                                                                                         |
|                                  | Display High<br>Display Low                                | 100.0<br>0.0                                                                                                                        |                                                                                                                                                                                                    | These parameters only<br>appear for Range Type<br>= Linear                                                                            |
| Potentiometer Input (VU)         | Pot Input function                                         | Not Used<br>Loop PV<br>Remote SP<br>RemOPH<br>RemOPL<br>Ch1VlvPos<br>Ch2VlvPos                                                      | Module fitted but not configured<br>Loop process variable<br>Remote setpoint<br>Remote output power maximum<br>Remote output power minimum<br>Channel 1 valve position<br>Channel 1 valve position | Ch1VlvPos/Ch2VlvPos<br>only appear if the<br>channel = VPB<br>Remote SP does not<br>appear if the<br>programmer option is<br>supplied |
| Transducer Power Supply<br>(G3)  | TdcrPSU function                                           | <b>5 Volts</b><br>10 Volts                                                                                                          |                                                                                                                                                                                                    | Always (if the module is fitted)                                                                                                      |
| Transmitter power supply<br>(M5) | No parameters. Used to show the ID of the module if fitted |                                                                                                                                     |                                                                                                                                                                                                    |                                                                                                                                       |

### Alarms

| Group           | Parameter |                                                               | Availability                                                                                                            |                                               |
|-----------------|-----------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Alarm 1         | Туре      | None                                                          | No alarm type configured                                                                                                | Always                                        |
| to 8            |           | Abs High                                                      | Absolute high                                                                                                           |                                               |
|                 |           | Abs Low                                                       | Absolute low                                                                                                            |                                               |
|                 |           | Dev High                                                      | Deviation high                                                                                                          |                                               |
|                 |           | Dev Low                                                       | Deviation low                                                                                                           |                                               |
|                 |           | Dev Band                                                      | Deviation band                                                                                                          |                                               |
| Alarm 1         | Source    | None                                                          | Not connected                                                                                                           | Always if Type ≠ None                         |
| to 8            |           | PV Input                                                      | Connected to process variable                                                                                           | PV Input and ModX Ip<br>do not appear if Type |
|                 |           | Loop PV                                                       | Connected to loop process variable for deviation alarms                                                                 |                                               |
|                 |           | ModX lp                                                       | Connected to a suitable module eg Analog IP (X = module number)                                                         |                                               |
| Alarm 1<br>to 8 | Setpoint  | To adjust the alarm threshold within the range of the source. |                                                                                                                         | Always if Type ≠ None                         |
| Alarm 1         | Latch     | None                                                          | No latching                                                                                                             | Always if Type ≠ None                         |
| to 8            |           | Auto                                                          | Automatic latching see section 1.15.1                                                                                   |                                               |
|                 |           | Manual                                                        | Manual latching see section 1.15.1                                                                                      |                                               |
|                 |           | Event                                                         | Alarm beacon does not light but any output associated with the event will activate and a scrolling message will appear. |                                               |

| Finished | Exit | No  | Continue back around the quick configuration list |  |
|----------|------|-----|---------------------------------------------------|--|
|          |      | Yes | Go to normal operation                            |  |



Aug-04

Part No HA027988 Issue 3.0

### 1.10 To Re-enter Quick Start Mode

If you have exited from Quick Start mode (by selecting 'Yes' to the 'Finished' parameter) and you need to make further changes, the Quick start mode can be entered again at any time. The action which takes place depends on one of two previous conditions as follows:-

#### 1.10.1 Power up After a Quick Start Configuration

- 1. Hold () down then power up the controller. Keep this button pressed until the Quick start screen as shown in section 1.9 is displayed.
- 2. Press  $\bigcirc$  to enter the quick start list. You will then be asked to enter a passcode.
- 3. Use  $\bigcirc$  or  $\bigcirc$  to enter the passcode default 4 the same as the configuration level passcode. If an incorrect code is entered the display reverts to the 'Quick Start' view section 1.9.

It is then possible to repeat the quick configuration as described previously.

The Quick Start view shown in section 1.9 now contains an additional parameter - 'Cancel'. This is now always available after a power up, and, if selected, will take you into normal operating mode, section 1.11.

#### 1.10.2 **Power up After A Full Configuration**

Repeat 1,2 and 3 above.

Full configuration allows a greater number of parameters to be configured in a deeper level of access. This is described later in this handbook.

If the controller has been re-configured in this level, a 'WARNING' message, 'Delete config?' - 'No' or 'Yes', will be displayed. If 'No' is selected the display drops back to the 'GoTo' screen.

- 1. Use  $\bigcirc$  or  $\bigcirc$  to select 'Yes'
- 2. Press  $\bigcirc$  to confirm or (a) to cancel. (If no button is pressed for about 10 seconds the display returns to the WARNING message).

If 'Yes' is selected the Quick start defaults will be re-instated. It is then necessary to reset all the Quick start parameters.



### 1.11 Normal Operation

Switch on the controller. Following a brief self-test sequence, a new controller will start up in AUTO mode and Operator Level 1. This section describes the operation of the controller in this level – further levels of operation are given in subsequent sections.

AUTO is the normal closed loop temperature control mode which means that the output power is adjusted automatically by the controller in response to the measurement from the input sensor. In this mode the format of the display for a new instrument is shown below. It is called the HOME display.



3508

3504

### 1.11.1 Beacon Display and Description

| OP1 | Illuminates when output 1 is ON (normally heating)                                                                                                                                                                                                    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OP2 | Illuminates when output 2 is ON (normally cooling or alarm)                                                                                                                                                                                           |
| MAN | Illuminates when manual mode active                                                                                                                                                                                                                   |
| REM | Illuminates when remote setpoint active                                                                                                                                                                                                               |
| SPX | Illuminates when alternative setpoint active                                                                                                                                                                                                          |
| ALM | If an alarm occurs the red alarm beacon flashes. This is accompanied by a message showing the source of the alarm, for example 'Boiler overheating'.                                                                                                  |
|     | To acknowledge press $\bigcirc$ and $\bigcirc$ . The message disappears. If the alarm condition is still present the beacon lights continuously. When cleared it will extinguish. A full description of the alarm operation is given in section 1.15. |
| RUN | Illuminates when programmer running – flashing indicates End                                                                                                                                                                                          |
| HLD | Illuminates when programmer held                                                                                                                                                                                                                      |
| J   | Flashes when J Channel comms active                                                                                                                                                                                                                   |
| н   | Flashes when H Channel comms active                                                                                                                                                                                                                   |
| IR  | Flashes when infra red communications active                                                                                                                                                                                                          |

In general throughout this handbook instrument views will use the 3504. The displayed information is similar for the 3508 but in some cases is shortened due to display limitations.



34.

### 1.12 The Operator Buttons



| A/MAN                          | Manual operation means that the controller output power is adjusted by the user. The input sensor is still connected and reading the PV but the control loop is open. |  |  |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| be disabled                    | When pressed, this toggles between automatic and manual operation.                                                                                                    |  |  |  |
|                                | • If the controller is in manual mode, 'MAN' light will be indicated                                                                                                  |  |  |  |
|                                | If the controller is powered down in Manual operation it will resume this mode when it is powered up again.                                                           |  |  |  |
| PROG                           | To select the programmer summary page                                                                                                                                 |  |  |  |
| RUN/HOLD                       | • Press once to start a program. 'RUN' will be indicated                                                                                                              |  |  |  |
| This button can<br>be disabled | • Press again to hold a program. 'HLD' will be indicated                                                                                                              |  |  |  |
| Se disubled                    | <ul> <li>Press and hold for at least two seconds to reset a program.</li> </ul>                                                                                       |  |  |  |
|                                | 'RUN' will flash at the end of a program                                                                                                                              |  |  |  |
|                                | 'HLD' will flash during holdback                                                                                                                                      |  |  |  |
|                                | Programmer operation is fully described in Chapter 21                                                                                                                 |  |  |  |
|                                | Press to select new PAGE headings                                                                                                                                     |  |  |  |
| $\bigcirc$                     | Press to select a new parameter in the page                                                                                                                           |  |  |  |
|                                | Press to decrease an analogue value, or to change the state of a digital value                                                                                        |  |  |  |
|                                | Press to increase an analogue value, or to change the state of a digital value                                                                                        |  |  |  |

### 1.12.1 Shortcut Key Presses

| Backpage                    | Press and hold . Then press . The page headers scroll backward at each press.<br>(With a still pressed you can press to page forward. This action is the same as pressing alone).         |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Backscroll                  | Press and hold ( when in a list. Then press ( Parameters scroll backward at each press.<br>Press and hold ( when in a list header. Then press. ( Parameters scroll forward at each press. |
| Jump to the<br>HOME display | Press + 🗇                                                                                                                                                                                 |
| Alarm Ack/reset             | Press ( + $\bigcirc$ when the HOME screen is being displayed. All active alarms will be acknowledged                                                                                      |


# **1.13 To Set The Required Temperature (Setpoint)**

From the HOME display, press or button.



A momentary press of either button will show the setpoint in use eg SP1.

The new setpoint is accepted when the button is released and is indicated by a brief flash of the setpoint display

# 1.14 To Select Manual Operation



The output power will change continuously while either of these buttons are pressed

If the controller is powered down in either Auto or Manual operation it will resume the same mode when it is powered up again.



# 1.15 Alarm Indication

If an alarm occurs it is indicated as follows:-

The red alarm (ALM) beacon in the top left of the display flashes

Alarm number is indicated together with the flashing riangleA default message or a pre-programmed message appears showing the source of the alarm Invitation to acknowledge the new alarm

#### To Acknowledge an Alarm 1.15.1

Press and 🕑 (Ack) together.

indication will also disappear.

The action, which now takes place, will depend on the type of latching, which has been configured

#### **Non Latched Alarms**

If the alarm condition is present when the alarm is

acknowledged, the alarm beacon will be continuously lit. This state will continue for as long as the alarm condition remains. When the alarm condition disappears the

If a relay has been attached to the alarm output, it will de-energise when the alarm condition occurs and remain in this condition until the alarm is acknowledged AND it is no longer present.

If the alarm condition disappears before it is acknowledged the alarm indication disappears as soon as the condition disappears.

#### **Automatic Latched Alarms**

The alarm continues to be active until both the alarm condition is removed AND the alarm is acknowledged. The acknowledgement can occur **BEFORE** the condition causing the alarm is removed.

#### Manual Latched Alarms

The alarm continues to be active until both the alarm condition is removed AND the alarm is acknowledged. The acknowledgement can only occur AFTER the condition causing the alarm is removed.





lQnQlm1

Press **N**+9 to Ack

3508

EUROTHERM

14.

54.0 100

G 0

Program

# 1.16 Message Centre

The lower section of the HOME display contains an alpha-numeric set of messages. These messages change between different controller types and operating modes and are grouped in summary pages. The 3504 contains more information than the 3508, and generally the parameter descriptions are longer due to the larger display.

WSP

oeran

3504

EUROTHERM

Out 60.5

6

内 100

UN/HOLD

Press 🗐

At each press a new page will be shown

#### 1.16.1 **Summary Pages**

Press . A set of pre-defined summary pages are shown at each press. These are typically a summary of programmer, loop and alarm operation. A further eight customised pages are also possible and these can be programmed off line using iTools programming software.

### **Loop Summary**

This view shows heat only.

For heat/cool the bar graph is bidirectional (+ 100%)



For valve position control the user interface will display either heat only or heat/cool summary pages.

## **Programmer Summary**

This display is only shown if the Programmer option has been enabled

### **Alarm Summary**

#### 9 Alm Smry Alarm Summary Yew Alarm New Alarm -10 Any Alarm h n <u>ehlo</u> **Alarm Settings** Sets m Set 10 0 P <u> Ang</u> All configured alarms will be listed 0 P <u>é na</u> Lo PР Parse ontrol Control Select l xehi xord Transducer 1000.0 0.0 St.art. 5 This display is only shown if the t.ar 1,220-02 NO

Transducer option has been enabled. See Chapter 23 for transducer calibration

> Part No HA027988 Issue 3.0 Aug-04



38.

2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel: 03 26 82 49 29

Sta

E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

#No

### 1.16.2 How to Edit Parameters

In the above summary pages, press  $\odot$  to scroll to further parameters (where applicable).

Press  $\bigcirc$  or  $\bigcirc$  to change the value of the parameter selected.

Any parameter preceded by  $\clubsuit$  is alterable provided the system is in a safe state to allow the parameter to be changed. For example, 'Program Number' cannot be changed if the program is running – it must be in 'Reset' or 'Hold' mode. If an attempt is made to alter the parameter its value is momentarily replaced by '-----' and no value is entered.

Some parameters are protected under a higher level of security – Level 2. In these cases it will be necessary to select 'Access Level 2'. This is carried out as follows:-

| Dàccess |                     |
|---------|---------------------|
| UGoto   | <pre>\$Level1</pre> |
| IR Mode | OFF                 |
| StandBy | No                  |

- 1. Press and hold (a) until the display shows
- 2. Press ( to select Level 2
- 3. Press (again to enter a security code. This is defaulted to 2. If an incorrect code is entered the display reverts to that shown in 1 above. If the default of 2 is not accepted this means that the code has been changed on your particular controller. It will be necessary to refer to the Access level chapter 2.
- 4. 'Pass' is displayed momentarily. You are now in Level 2.



# 1.16.3 **Programmer Summary Page**

Provided it has been ordered and enabled the 3500 series controllers can program the rate of change of setpoint. Up to 50 programs and up to a maximum of 200 segments can be stored and run. Chapter 21 explains setpoint programming in more detail.

### 1.16.3.1 To Select a Parameter



Press  $\bigcirc$  to scroll through a list of parameters. On the 'Programmer Summary' shown here, the list of parameters which can be selected are:-

| Parameter<br>Name | Parameter Description                                                                                                                                                                                                                  |                             | ١                                    | /alue           | Default                               | Available in Level |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|-----------------|---------------------------------------|--------------------|
| Program           | Program number (and name if this has been configured)                                                                                                                                                                                  | 1 to max number of programs |                                      | 1               | Lev 1 Alterable<br>when prog in reset |                    |
| Segment           | Segment number (and type on 3504)                                                                                                                                                                                                      | 1 to max                    | nur                                  | mber of         | 1                                     | Lev 1              |
|                   | Only appears when the programmer is running                                                                                                                                                                                            | segments                    | S                                    |                 |                                       |                    |
| Seg Time Left     | Segment Time Left                                                                                                                                                                                                                      | hrs:mins:                   | secs                                 | i               | Read                                  | Lev 1              |
|                   | Only appears when the programmer is running                                                                                                                                                                                            |                             |                                      |                 | only                                  |                    |
| Status            | Program Status                                                                                                                                                                                                                         | End                         |                                      | Prog ended      |                                       | Lev 1              |
|                   |                                                                                                                                                                                                                                        | Run                         |                                      | Prog running    |                                       |                    |
|                   |                                                                                                                                                                                                                                        | Hold                        |                                      | Prog held       |                                       |                    |
|                   |                                                                                                                                                                                                                                        | Holdback                    | <                                    | In holdback     |                                       |                    |
| PSP               | Profile setpoint value                                                                                                                                                                                                                 | Can be c                    | han                                  | ged in Hold     |                                       | Lev 1              |
| Cycles Left       | Number of repeat cycles left to run                                                                                                                                                                                                    | 1 to maximum number of      |                                      |                 | Lev 1 R/O in Run                      |                    |
|                   | Can only be changed in Hold or Reset                                                                                                                                                                                                   | cycles set                  |                                      |                 |                                       |                    |
| Advance           | Sets the program setpoint equal to the target setpoint and moves to the next segment.                                                                                                                                                  | No<br>Yes                   | No This is a<br>Yes momentary action |                 | No                                    | Lev 1              |
|                   | Only operates when the programmer is running (not in Hold)                                                                                                                                                                             |                             |                                      |                 |                                       |                    |
| SkipSeg           | Moves immediately to the next segment                                                                                                                                                                                                  | No                          | Th                                   | is is a         | No                                    | Lev 1              |
| //                | and starts from the current setpoint value.                                                                                                                                                                                            | Yes                         | mo                                   | omentary action |                                       |                    |
|                   | Only operates when the programmer is running (not in Hold)                                                                                                                                                                             |                             |                                      |                 |                                       |                    |
| Fast Run          | This is only available in level 3 as described                                                                                                                                                                                         | No                          | Fa                                   | st run disabled |                                       | Lev 3              |
|                   | in later chapters. Set to 'Yes' and then run<br>the program. The programmer will run<br>through the segments at a fast rate. It is<br>intended to be used only to test a new<br>program and should not be used on an<br>active process | Yes                         | Fa                                   | st run enabled  |                                       |                    |
| Events            | State of the event outputs when the                                                                                                                                                                                                    | 🛛 Even                      | it ina                               | active          |                                       | Lev 1              |
| or<br>Rst Events  | program is running or when in reset                                                                                                                                                                                                    | Even                        | t ac                                 | tive            |                                       |                    |
| Prg. TimeLeft     | Time remaining to end of selected program                                                                                                                                                                                              | hrs:mins:secs               |                                      |                 | Lev 1                                 |                    |





#### 1.16.3.2 To Select and Run a Program

In this example it is assumed that the program to be run has already been entered. Setpoint programming is described in detail in Chapter 21 of the Engineering Handbook.



An alternative way to run, hold or reset the program is to scroll to 'Program Status' using  $\bigcirc$  and select 'Run', 'Hold' or 'Reset' using  $\bigcirc$  or  $\bigcirc$ 

Part No HA027988 Issue 3.0 Aug-04



### 1.16.4 Alarm Summary Page

This page shows a summary of all analogue alarms. Press  $\bigcirc$  to scroll through the alarms.

The diagram illustrates that an alarm is present in the system but that none of the alarms need acknowledgement.

A New Alarm occurs when any new alarm becomes active. This parameter may be used to activate a relay output to provide external audible or visual indication.

| ALM |      | MAN SP | X      |                |
|-----|------|--------|--------|----------------|
|     |      |        | ŗ      | <b>) 🎵 '</b> E |
|     |      |        | L      | Lev 2          |
|     | -1.3 | 1 m    | summar | ·              |
|     | New  | Alar   | m      | #No            |
|     | 0mu  | Alar   | m      | Yes            |
|     | Ack  | A11    | 2      | No             |
| L_  |      |        |        |                |

### 1.16.5 Alarms Setting Page

Up to eight analogue alarms can be configured. The alarm thresholds can be set in Level 2 in this page.

Press  $\bigcirc$  to scroll through the alarms.

Press  $\bigcirc$  or  $\bigcirc$  to set the threshold values

Analogue alarm 1, configured as Absolute High and set to operate at 123.00

Analogue alarm 2, configured as Absolute Low and set to operate at -10.00

| Alar  | n Sett | .irras   |
|-------|--------|----------|
| 1:Pbs | Hi     | \$123.00 |
| 2:Abs | Lo     | -10.00   |
|       |        |          |

42.

Aug-04

Part No HA027988 Issue 3.0

#### 1.16.6 **Control Summary Page**

Parameters which define the way a control loop operates can be set in this page. Control parameters are further described in Chapter 20.

Press  $\bigcirc$  to scroll through a list of parameters.



Press O or O to change the value of the selected parameter.

On the Control Summary page the following parameters are available:-

| Parameter<br>Name  | Parameter Description                                                                                                                              | Value                 | Default  | Available in<br>Level |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|-----------------------|
| SP Select          | To select SP1 or SP2                                                                                                                               | Between range         | As order | Lev 1                 |
| SP1                | To set the value of SP1                                                                                                                            | limits set in         | code     | Lev 1                 |
| SP2                | To set the value of SP2                                                                                                                            | access                |          | Lev 1                 |
| SP Rate            | To set the rate at which the setpoints change                                                                                                      |                       |          | Lev 1                 |
| Tune (1)           | To start self tuning                                                                                                                               | Off                   | Off      | alterable in          |
|                    |                                                                                                                                                    | On                    |          |                       |
| PB (1)             | To set proportional band                                                                                                                           | 0 to 99999            |          |                       |
| Ti (1)             | To set integral time                                                                                                                               | Off to 99999          |          |                       |
| Td (1)             | To set derivative time                                                                                                                             | Off to 99999          |          |                       |
| R2G <sup>(1)</sup> | To set relative cool gain                                                                                                                          | 0.1 to 10.0           |          |                       |
| CBH (1)            | To set cut back high                                                                                                                               | Auto to 99999         |          |                       |
| CBL <sup>(1)</sup> | To set cut back low                                                                                                                                | Auto to 99999         |          |                       |
| Output Hi          | To set a high limit on the control output                                                                                                          | -100.0 to 100.0%      | 100.0    |                       |
| Output Lo          | To set a low limit on the control output                                                                                                           | -100.0 to 100.0%      | 0.0      |                       |
| Ch1 OnOff<br>Hyst  | Channel 1 hysteresis (Only if configured for On/Off control)                                                                                       | 0.0 to 200.0          |          |                       |
| Ch2 OnOff<br>Hyst  | Channel 2 hysteresis (Only if channel 2 is configured and for On/Off control)                                                                      | 0.0 to 200.0          |          |                       |
| Ch2 DeadB          | Channel 2 deadband. To set the period in which<br>there is no output from either channel. (This does<br>not appear if channel 2 is not configured) | Off to 100.0          |          |                       |
| Ch1<br>TravelT     | Motor travel time if valve control output on channel<br>1                                                                                          | 0.0 to 1000.0 seconds |          |                       |
| Ch1<br>TravelT     | Motor travel time if valve control output on channel<br>1                                                                                          | 0.0 to 1000.0 seconds |          |                       |
| Safe OP            | To set an output level under sensor break conditions                                                                                               | -100.0 to 100.0%      | 0.0      |                       |

<sup>(1)</sup> Does not appear if control is configured for On/Off parameters

Part No HA027988 Aug-04 Issue 3.0



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

# 2. CHAPTER 2 ACCESS TO FURTHER PARAMETERS

Parameters are available under different levels of security defined as Level 1, Level 2, Level 3 and Configuration Level. Level 1 has no security password since it contains a minimal set of parameters generally sufficient to run the process on a daily basis. Level 2 allows parameters, such as those used in commissioning a controller, to be adjusted. Level 3 and Configuration level parameters are also available as follows:-

### 2.1.1 Level 3

Level 3 makes all operating parameters available and alterable (if not read only)

Examples are:-

Range limits, setting alarm levels, communications address.

The instrument will continue to control when in Levels 1, 2 or 3.

### 2.1.2 Configuration Level

This level makes available all parameters including the operating parameters so that there is no need to switch between configuration and operation levels during commissioning. It is designed for those who may wish to change the fundamental characteristics of the instrument to match the process.

Examples are:-

Input (thermocouple type); Alarm type; communications type.

### WARNING

Configuration level gives access to a wide range of parameters which match the controller to the process. Incorrect configuration could result in damage to the process being controlled and/or personal injury. It is the responsibility of the person commissioning the process to ensure that the configuration is correct.

In configuration level the controller is not controlling the process or providing alarm indication. Do not select configuration level on a live process.

| Operating Level | Home List | Full<br>Operator | Configuration | Control |
|-----------------|-----------|------------------|---------------|---------|
| Level 1         | ~         |                  |               | Yes     |
| Level 2         | ~         |                  |               | Yes     |
| Level 3         | ~         | ✓                |               | Yes     |
| Configuration   | ~         | ✓                | ~             | No      |



Aug-04

Part No HA027988 Issue 3.0

|    | Do This                                                            | The Display You Should See                                                                  | Additional Notes                                                                                                                                                                  |  |
|----|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1. | From any display press and hold                                    | DACCESS<br>(dGoto ≠Level1<br>IR Mode Off<br>StandBy No                                      | After a few seconds the display will show Goto<br>◆ Level 1.<br>If no button is pressed for about 2 minutes the<br>display returns to the HOME display.                           |  |
|    |                                                                    |                                                                                             | This is a view for the 3504, and shows additional parameters in the list. The 3508 shows these parameters one at a time                                                           |  |
|    |                                                                    |                                                                                             | In either controller, press $\odot$ to scroll through the list of parameters                                                                                                      |  |
| 2  |                                                                    | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | The choices are:                                                                                                                                                                  |  |
| 2. | different levels of access                                         | 0Goto #Confia<br>IR Mode Off<br>Stanc®u No                                                  | Level 1                                                                                                                                                                           |  |
|    |                                                                    |                                                                                             | Level 2                                                                                                                                                                           |  |
|    |                                                                    | ↓<br>Déccess                                                                                | Level 3                                                                                                                                                                           |  |
|    |                                                                    | 0Pass code #0                                                                               | Configuration                                                                                                                                                                     |  |
|    |                                                                    |                                                                                             |                                                                                                                                                                                   |  |
| 3. | Press $lacksquare$ or $lacksquare$ to enter the                    | DACCESS<br>(Pass code #4                                                                    | Level 1 None                                                                                                                                                                      |  |
|    | correct code for the level<br>chosen                               |                                                                                             |                                                                                                                                                                                   |  |
|    |                                                                    | 11                                                                                          | Level 3 3                                                                                                                                                                         |  |
|    |                                                                    | Dánness                                                                                     | Configuration 4                                                                                                                                                                   |  |
|    |                                                                    | 0Pass code #Pass                                                                            | If an incorrect code is entered the display reverts to the previous view.                                                                                                         |  |
| 4. | The controller is now in<br>configuration level in this<br>example | ECONFIS<br>MACCESS<br>MGoto<br>Level2 Code<br>Level3 Code<br>3                              | Press (To scroll through the list headers in the chosen level starting with Access List. The full list of headers is shown in the Navigation Diagram, section 3.1.2.              |  |
| 5. | To return to a lower level, press and hold (if necessary)          | <b>⊪Access</b><br>0Goto ≉Level1<br>IR Mode Off                                              | It is not necessary to enter a code when going from a higher level to a lower level.                                                                                              |  |
|    | return to the Access Page                                          | StandBy No                                                                                  | When Level 1 is selected the display reverts to the HOME display                                                                                                                  |  |
| 6. | Press ( ) or ( ) to select the level                               |                                                                                             | Do not power down while the controller is changing<br>levels. If a power down does occur an error message<br>- ELonF - will appear - see also section 11.6<br>'Diagnostic Alarms' |  |

#### 2.1.3 To Select Different Levels of Access

(a) A special case exists if a security code has been configured as '0' If this has been done it is not necessary to enter a code and the controller will enter the chosen level immediately.

- <sup>©</sup> When the controller is in configuration level the ACCESS list header can be selected from any view by pressing (and () together.
- ${f \odot}$  An alternative way to access configuration level is to power up the instrument with  ${f \odot}$  and  ${f \odot}$ buttons pressed. You will then be asked to enter the security code to take you to configuration level.

Part No HA027988 Aug-04 Issue 3.0



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

#### 2.2 **Access Parameter List**

The following table summarises the parameters available under the Access list header

| List Header - Access |                                                                                                                                                                                                                                                           | Sub-headers: None |                                 |         |                 |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|---------|-----------------|
| Name                 | Parameter Description                                                                                                                                                                                                                                     | Value             |                                 | Default | Access<br>Level |
| Goto                 | To select different levels of access. Passcodes                                                                                                                                                                                                           | Lev.1             | Operator mode level 1           | Lev.1   | L1              |
|                      | prevent accidental edit                                                                                                                                                                                                                                   | Lev.2             | Operator mode level 2           |         |                 |
|                      |                                                                                                                                                                                                                                                           | Lev.3             | Operator mode level 3           |         |                 |
|                      |                                                                                                                                                                                                                                                           | Config            | Configuration level             |         |                 |
| Level2 Code *        | To customise the passcode to access level 2                                                                                                                                                                                                               | 0 to 999          | 9                               | 2       | Conf            |
| Level3 Code *        | To customise the passcode to access level 3                                                                                                                                                                                                               | 0 to 999          | 9                               | 3       | Conf            |
| Config Code *        | To customise the passcode to access configuration level                                                                                                                                                                                                   | 0 to 999          | 9                               | 4       | Conf            |
| IR Mode              | To activate/de-activate the front panel InfraRed                                                                                                                                                                                                          | Off               | Inactive                        | Off     | Conf            |
|                      | port. This is normally deactivated.                                                                                                                                                                                                                       | On                | Active                          |         |                 |
|                      | The IR port is used to link the instrument to a PC<br>and may be used for configuring the instrument<br>using iTools when a digital comms link is not<br>available. It requires an IR clip, available from<br>Eurotherm, to link your Instrument to a PC. |                   |                                 |         |                 |
| A/Man Func           | This enables or disables the front panel A/MAN                                                                                                                                                                                                            | On                | Enabled                         | On      | Conf            |
|                      | button                                                                                                                                                                                                                                                    | Off               | Disabled                        |         |                 |
| Run/Hold Func        | This enables or disables the front panel                                                                                                                                                                                                                  | On                | Enabled                         | On      | Conf            |
|                      | RUN/HOLD button                                                                                                                                                                                                                                           | Off               | Disabled                        |         |                 |
| Customer ID          | To set an identification number for the controller                                                                                                                                                                                                        | 0 to 999          | 9                               | 0       | Conf            |
| Keylock              | When set to 'All' no front panel key is active.                                                                                                                                                                                                           | None              | Front panel keys active         | None    | Conf            |
|                      | This protects the instrument from accidental edits during normal operation.                                                                                                                                                                               | All               | All Edits and<br>Navigation are |         |                 |
|                      | To restore access to the keyboard from operator levels you must power up the instrument with the  and  buttons pressed. This will take you directly to the configuration level password entry.                                                            |                   | prevented.                      |         |                 |
| Standby              | Set to 'Yes' to select standby mode. In standby<br>all control outputs are set to zero. The controller<br>automatically enters standby mode when it is in<br>Configuration level or during the first few<br>seconds after switch on.                      | No<br>Yes         |                                 | No      | Conf            |

The format of this table is used throughout this manual to summarise all parameters in a list.

The title of each table is the list header.

Column 1 shows the mnemonic (Name) of the parameter as it appears on the display

Column 2 describes the meaning or purpose of the parameter

Column 3 the value of the parameter

Column 4 a description of the enumeration

Column 5 the default value set when the controller is first delivered

Column 6 the access level for the parameter. If the controller is in a lower access level the parameter will not be shown

### \* When changing passwords please make a record the new password



Part No HA027988 Issue 3.0 Aug-04

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

# 3. CHAPTER 3 FUNCTION BLOCKS

The controller software is constructed from a number of 'function blocks'. A function block is a software device which performs a particular duty within the controller. It may be represented as a 'box' which takes data in at one side (as inputs), manipulates the data internally (using parameter settings) and 'outputs' the data. Some of these parameters are available to the user so that they can be adjusted to suit the characteristics of the process which is to be controlled.

A representation of a function block is shown below.





In the controller, parameters are organised in simple lists. The top of the list shows the list header. This corresponds to the name of the function block and is generally presented in alphabetical order. This name describes the generic function of the parameters within the list. For example, the list header **'AnAlm'** contains parameters which enable you to set up analogue alarm conditions.

48.

# 3.1 To Access a Function Block

**Press the Page button** (1) until the name of the function block is shown in the page header.



Figure 3-2: Parameter List Headings

# 3.1.1 Sub-Lists or Instances

In some cases the list is broken down into a number of sub-headers to provide a more comprehensive list of parameters. An example of this is shown above for the Instrument List. The sub-header is shown in the right hand corner. To select a different sub-header press or



# 3.1.2 To Access a Parameters in a Function Block

**Press the scroll button** 🕑 until the required parameter is located.

Each parameter in the list is selected in turn each time this button is pressed. The following example shows how to select the first two parameters in the Alarm List. All parameters in all lists follow the same format.



Press a to jump back to the top of the list.

Figure 3-3: Parameters

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

#### 3.1.3 To Change the Value of a Parameter

Press  $\bigcirc$  or  $\bigcirc$  to raise or lower the value of an analogue (numeric) parameter or to change the selection of enumerated parameter options.

Any parameter preceded by  $\Rightarrow$  is alterable provided the system is in a safe state to allow the parameter to be changed. For example, 'Program Number' cannot be changed if the program is running - it must be in 'Reset' mode. If an attempt is made to alter the parameter its value is momentarily replaced by '---' and no value is entered.

#### 3.1.3.1 **Analogue Parameters**

When the raise or lower button is first depressed there is a single increment or decrement of the least significant digit. Either button can be held down to give a repeating action at an accelerating rate.

#### 3.1.3.2 **Enumerated Parameters**

Each press of the raise or lower button changes the state of the parameter. Either button can be held down to give a repeating action but not at an accelerating rate. Enumerated parameters are allowed to wrap around.

#### **Time Parameters** 3.1.3.3

| Time parameters start with a resolution of 0.1 second to 59:59.9     | mm:ss.s  | 0:00.0  |
|----------------------------------------------------------------------|----------|---------|
| When 59:59.9 is reached the resolution becomes 1 second to 99:59:59  | hh:mm:ss | 1:00:00 |
| When this limit is reached the resolution becomes 1 minute to 500:00 | hhh:mm   | 100:00  |

#### 3.1.3.4 **Boolean Parameters**

These are similar to enumerated parameters but there are only two states. Pressing either the raise or lower button causes the parameter to toggle between states.

#### 3.1.3.5 **Digital Representation Characters**

Parameters whose values are used digitally (i.e. bitfields) are represented by:

- - On State or
- □ Off State

A parameter may be represented by using any number of bits between 1 and 16 inclusive. Scrolling on to the parameter selects the leftmost bit, and subsequent scroll operations move the selected bit right by one. Backscroll may be used to move the selected bit towards the left. Raise and lower buttons are used to turn the selected bit on or off respectively.

50.

Aug-04

Part No HA027988 Issue 3.0

# 3.2 Navigation Diagram

The diagram below shows all the function blocks available in the 3500 series controllers as list headings in configuration level. A function block will not be shown if it has not been enabled or ordered if it is a chargeable option. Select in turn using 1:-



Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

# 4. CHAPTER 4 FUNCTION BLOCK WIRING

Input and output parameters of function blocks are wired together in software to form a particular instrument or function within the instrument. A simplified overview of how these may be interconnected to produce a single control loop is shown below.



#### Figure 4-1: Controller Example

Function blocks are wired (in software) using the Quick Start mode and/or full configuration mode. In the controller example here, the Process Variable (PV) is measured by the sensor and compared with a Setpoint (SP) set by the user.

The purpose of the control block is to reduce the difference between SP and PV (the error signal) to zero by providing a compensating output to the plant via the output driver blocks.



52.

The timer, programmer and alarms blocks may be made to operate on a number of parameters within the controller, and digital communications provides an interface to data collection and control.

The controller can be customised to suit a particular process by 'soft wiring' between function blocks. The procedure is described in the following sections.

### 4.1 Soft Wiring

Soft Wiring (sometimes known as User Wiring) refers to the connections which are made in software between function blocks. Soft wiring, which will generally be referred to as 'Wiring' from now on, is possible through the operator interface of the instrument. This is described in the next section but it is recommended that this method is only used if small changes are required, for example, when the instrument is being commissioned.

The preferred method of wiring uses the iTools configuration package since it is quicker and easier. Wiring using iTools is described in chapter 26.

### 4.1.1 Wiring Example

In general every function block has at least one input and one output. Input parameters are used to specify where a function block reads its incoming data (the 'Input Source'). The input source is usually wired to the output from a preceding function block. Output parameters are usually wired to the input source of subsequent function blocks.

The value of a parameter which is not wired can be adjusted through the front panel of the controller provided it is not Read Only (R/O) and the correct access level is selected.

All parameters shown in the function block diagrams are also shown in the parameter tables, in the relevant chapters, in the order in which they appear on the instrument display (alphabetical).

Figure 4-2 shows an example of how the channel 1 (heat) output from the PID block might be wired to the logic output connected to terminals LA/LC.





Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

# 4.1.2 Wiring Through the Operator Interface

The example shown in the previous section will be used.

Select configuration level as described in section 2.1.3. Then:-

|    | Do This                                                                                                                                         | The Display You Should See                                                                     | Additional Notes                                                                                                                                                     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | From any display press (From any display press) to locate the page in which the parameter is to be found. (In this example <b>'LgcIO'</b> page) | Lac.IO LA<br>IO Type Input<br>Invert No<br>GPU 1                                               | This locates the parameter you want to wire TO                                                                                                                       |
| 2. | Press ( ) or ( ) if necessary<br>to select a sub-header. (In this<br>example <b>'LA'</b> )                                                      | Indicates parameter selected                                                                   |                                                                                                                                                                      |
| 3. | Press () to scroll to the parameter to be wired <b>TO</b> . (In this example <b>'PV'</b> )                                                      |                                                                                                |                                                                                                                                                                      |
| 4. | Press to display<br>'WireFrom'                                                                                                                  | WireFrom<br>B                                                                                  | In configuration mode the A/MAN button is the Wire button.                                                                                                           |
| 5. | Press (as instructed) to<br>navigate to the list header<br>which contains parameter you<br>want to wire <b>FROM.</b>                            | WireFrom<br>Le ¢OP<br>OChi Outeut                                                              | You will also need to use or to select a sub-header, if appropriate, and to scroll to the parameter - in this example <b>'Ch1 Output'</b> in the <b>'Lp OP'</b> page |
| 6. | Press A/MAN                                                                                                                                     | <b>L⊨OP</b><br>Chi Out⊨ut<br>N+Cancel 0+OK                                                     | This 'copies' the parameter to be wired FROM                                                                                                                         |
| 7. | Press 🕝 as instructed to confirm                                                                                                                | Lec. 10 LA<br>IO Type Input<br>Invert. No<br>1.0<br>M<br>Indicates that the parameter is wired | This 'pastes' the parameter to 'PV'                                                                                                                                  |

Aug-04

Part No HA027988 Issue 3.0



#### 4.1.3 To Remove a Wire

|     | Do This                                                            | The Display You Should See                                                                       | Additional Notes                                                                                  |
|-----|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 8.  | Select the wired parameter<br>eg LgcIO PV in the above<br>example, | C<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S |                                                                                                   |
| 9.  | Press                                                              | WireFrom<br>Le ¢OP<br>GChi Outeut                                                                | This locates the parameter you want to wire TO                                                    |
| 10. | Press Ack to clear the<br><b>'WireFrom'</b> display                | WireFrom<br>B                                                                                    | This is the quick way to select no wire.<br>You can also select this by pressing ()<br>repeatedly |
| 11. | Press A/MAN                                                        | Delete Wire?<br>B→Cancel 0→OK                                                                    |                                                                                                   |
| 12. | Press 🕑 to OK                                                      | Lacio LA<br>IO Type Input<br>Invert No<br>OPV 1                                                  |                                                                                                   |

Part No HA027988 Issue 3.0 Aug-04



# 4.1.4 Wiring a Parameter to Multiple Inputs

You can repeat the procedure given in section 4.1.2. but it is also possible to 'Copy' and 'Paste' a parameter. In configuration level the RUN/HOLD button becomes a copy function. The following example wires Ch1 Output to both LA and LB PV inputs.

|    | Do This                                                      | The Display You Should See                                      | Additional Notes             |
|----|--------------------------------------------------------------|-----------------------------------------------------------------|------------------------------|
| 1. | Select Ch1 Output                                            | Le OP<br>Output Hi 100.0<br>Output Lo -100.0<br>OChi Output 0.0 |                              |
| 2. | Press RUN/HOLD                                               | LPOP<br>Chi Output<br>Copied                                    | This copies channel 1 output |
| 3. | Select the parameter to wire to.<br>In this case LgcIO LA PV | Lacio LA<br>IO Type Input<br>Invert No<br>OPV 1                 |                              |
| 4. | Press                                                        | WireFrom<br>B                                                   |                              |
| 5. | Press RUN/HOLD                                               | WireFrom<br>Le ¢OP<br>9Ch1 Outeut                               |                              |
| 6. | Press A/MAN                                                  | <b>LPOP</b><br>Chi OutPut<br>B+Cancel G+OK                      |                              |
| 7. | Press 💮 to OK                                                | Locio LA<br>IO Type Input<br>Invert No<br>OPV 1                 |                              |
| 8. | Now repeat 3 to 8 but for LgcIO<br>LB                        | Lacio LB<br>IO Type Input<br>Invert No<br>OPV 1                 |                              |

# 4.1.5 Wiring Using iTools

The recommended method of wiring is to use iTools.

A description of how iTools may be used for graphical wiring is given in Chapter 26.



### 4.1.6 Wiring Floats with Status Information

There is a subset of float values which may be derived from an input which may become faulty for some reason, e.g. sensor break, overrange, etc. These values have been provided with an associated status which is automatically inherited through the wiring. The list of parameters which have associated status is as follows:-

| Block            | Input Parameters | Output Parameters |
|------------------|------------------|-------------------|
| Loop.Main        | PV               | PV                |
| Loop.SP          |                  | TrackPV           |
| Loop.OP          | CH1PotPosition   |                   |
|                  | CH2PotPosition   |                   |
| Math2            | In1              |                   |
|                  | In2              |                   |
|                  |                  | Out               |
| Programmer.Setup | PVIn             |                   |
| Poly             | In               |                   |
|                  |                  | Out               |
| Load             |                  | PVOut1            |
|                  |                  | PVOut2            |
| Lin16            | In               |                   |
|                  |                  | Out               |
| Txdr             | InVal            |                   |
|                  |                  | OutVal            |
| IPMonitor        | In               |                   |
| SwitchOver       | In1              |                   |
|                  | In2              |                   |
|                  |                  | Out               |
| Total            | In               |                   |
| Mux8             | In18             |                   |
|                  |                  | Out               |
| Lgc2             | In1              |                   |
|                  | In2              |                   |
| UsrVal           | Val              | Val               |
| Humidity         |                  | RelHumid          |
|                  |                  | DewPoint          |
|                  | WetTemp          |                   |
|                  | DryTemp          |                   |
|                  | PsychroConst     |                   |
|                  | Pressure         |                   |
| IO.MOD           | A.PV, B.PV, C.PV | A.PV, B.PV, C.PV  |
| IO.PV            | PV               | PV                |

Parameters appear in both lists where they can be used as inputs or outputs depending on configuration. The action of the block on detection of a 'Bad' input is dependent upon the block. For example, the loop treats a 'Bad' input as a sensor break and takes appropriate action; the Mux8 simply passes on the status from the selected input to the output, etc.

Part No HA027988 Issue 3.0 Aug-04



The Poly, Lin16, SwitchOver, Mux8, IO.Mod, and IO.PV blocks can be configured to act on bad status in varying ways. The options available are as follows:-

### 0: Clip Bad

The measurement is clipped to the limit it has exceeded and its status is set to 'BAD', such that any function block using this measurement can operate its own fallback strategy. For example, control loop may hold its output to the current value.

### 1: Clip Good

The measurement is clipped to the limit it has exceeded and its status is set to 'GOOD', such that any function block using this measurement may continue to calculate and not employ its own fallback strategy.

### 2: Fallback Bad

The measurement will adopt the configured fallback value which has been set by the user. In addition the status of the measured value will be set to 'BAD', such that any function block using this measurement can operate its own fallback strategy. For example, control loop may hold its output to the current value.

### 3: Fallback Good

The measurement will adopt the configured fallback value which has been set by the user. In addition the status of the measured value will be set to 'GOOD', such that any function block using this measurement may continue to calculate and not employ its own fallback strategy

### 4: Up Scale

The measurement will be forced to adopt its high limit. This is like having a resistive pull up on an input circuit. In addition the status of the measured value will be set to 'BAD', such that any function block using this measurement can operate its own fallback strategy. For example, the control loop may hold its output to the current value.

### 5: Down Scale

The measurement will be forced to adopt its low limit. This is like having a resistive pull down on an input circuit. In addition the status of the measured value will be set to 'BAD', such that any function block using this measurement can operate its own fallback strategy. For example, the control loop may hold its output to the current value.



#### 4.1.7 **Edge Wires**

If the Loop.Main.AutoMan parameter was wired from a logic input in the conventional manner it would be impossible to put the instrument into manual from the front panel of the instrument. Other parameters need to be controlled by wiring but also need to be able to change under other circumstances, e.g. Alarm Acknowledgements. for this reason some Boolean parameters are wired in an alternative way. These are listed as follows:-

#### SET DOMINANT

When the wired in value is 1 the parameter is always updated. This will have the effect of overriding any changes through the front panel or through digital communications. When the wired in value changes to 0 the parameter is initially changed to 0 but is not continuously updated. This permits the value to be changed through the front panel or through digital communications.

Loop.Main.AutoMan

Programmer.Setup.ProgHold

Access.StandBy

# **RISING EDGE**

When the wired in value changes from 0 to 1, a 1 is written to the parameter. At all other times the parameter is not updated by the wire. This type of wiring is used for parameters which start an action and when once completed the block clears the parameter. When wired to, these parameters can still be operated from the front panel or through digital communications.

Loop.Tune.AutotuneEnable

Programmer.Setup.ProgRun

Programmer.Setup.AdvSeg

Programmer.Setup.SkipSeg

Alarm.Ack

AlmSummary.GlobalAck

DigAlarm.Ack

Txdr.ClearCal

Txdr.StartCal

Txdr.StartHighCal

Txdr.StartTare

IPMonitor.Reset

Instrument.Diagnostics.ClearStats

#### **BOTH EDGE**

This type of edge is used for parameters which may need to be controlled by wiring or but should also be able to be controlled from the front panel or through digital communications. If the wired in value changes then the new value is written to the parameter by the wire. At all other times the parameter is free to be edited from the front panel or through digital communications.

Loop.SP.RateDisable

Loop.OP.RateDisable

Comms.BroadcastEnabled

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

### 4.1.8 Operation of Booleans and Rounding

### 4.1.8.1 Mixed Type Wiring

Parameters of function blocks are one of the following types shown below. Wires which connect one type to another cause a type conversion to occur. The values wired may also be rejected or clipped depending on type and limits.

#### **BOOLEANs (including Edges)**

Any value greater than or equal to 0.5 wired to a boolean (or edge) is considered true. When wired to other values booleans will be considered as 0 or 1.

### INTEGER

Values outside the limits of the integer will be clipped to the limits.

#### ENUMERATED INTEGER

Values which are outside the limits of an enumerted parameter or do not have a defined enumeration will not be written.

#### **BINARY INTEGER (PIANO KEYS)**

A value which exceeds the number of bits used by the parameter will be rejected.

#### FLOAT

Values outside the limits of a float parameter will be clipped to the limits. Wiring from a float to any other type will be rounded to the nearest integer. Where the value falls half way between two integers it will be rounded towards the higher absolute value. I.e. -3.5 rounds to -4 and +3.5 rounds to +4.

#### TIME

Times can only be wired to or from other times or floats. When wired to or from floats the float value is in seconds.

#### STRING

String values can not be wired.

NOTE: In 3500 Firmware V1.12 and before floats were truncated, rather than rounded and booleans rejected any value but 0 or 1.



Aug-04

Part No HA027988 Issue 3.0

# 5. CHAPTER 5 INSTRUMENT CONFIGURATION

# 5.1 WHAT IS INSTRUMENT CONFIGURATION?

Instrument configuration allows you to:-

- 1. Enable controller options
- 2. Customise the display
- 3. Read information about the controller
- 4. Read internal diagnostics

### 5.2 To Select Instrument Configuration

Select Configuration level as described in Chapter 2.

The first view displayed is the header 'Inst' plus the sub-header '**Cpt'**.

This allows you to enable or disable instrument options. The ' $\blacklozenge$ ' symbol indicates further sub-headers are available. To select these press  $\frown$  or  $\heartsuit$ .



Figure 5-1: Instrument Configuration Displays

# 5.3 To Enable Controller Options

Options may be enabled or disabled. If the option is enabled a list header containing parameters applicable to the feature will be available as shown in the Navigation diagram, section 3.2. If the option is disabled the list header will not be shown, thus ensuring that only those parameters which are relevant to the application are displayed.

Chargeable options can only be enabled if they have been ordered.

- 1. Press  $\bigcirc$  to scroll to the option required
- 2. Press  $\bigcirc$  or  $\bigcirc$  to edit the option.  $\square$  = Disabled  $\blacksquare$  = Enabled

Part No HA027988 Issue 3.0 Aug-04



# 5.3.1 Options Available in the Instrument Configuration List

The following table lists the options which can be enabled in the controller:-

| List Header: Inst |                          | Sub-header: Opt                               |          |        |
|-------------------|--------------------------|-----------------------------------------------|----------|--------|
| Name              | Parameter<br>Description | Value                                         | Default  | Access |
| to select         | Description              |                                               |          |        |
| AnAlm En          | Analogue alarms          | All 8 analogue alarms disabled                |          | Conf   |
| BCDIn En          | BCD switch input         | Both inputs disabled                          |          | Conf   |
|                   |                          | Both inputs enabled                           |          |        |
| Counter En        | Counters                 | Both counters disabled                        |          | Conf   |
|                   |                          | Both counters enabled                         |          |        |
| DgAlm En          | Digital alarms           | □ □ □ □ □ □ □ □ All 8 digital alarms disabled |          | Conf   |
| -                 | -                        | All 8 digital alarms enabled                  |          |        |
| Humidity En       | Humidity control         | Humidity block disabled                       |          | Conf   |
| -                 |                          | Humidity block enabled                        |          |        |
| IO Exp En         | IO expander              | IO expander disabled                          |          | Conf   |
|                   |                          | ■ IO expander enabled                         |          |        |
| IP Mon En         | Input monitor            | Both monitors disabled                        |          | Conf   |
|                   | •                        | Both monitors enabled                         |          |        |
| Lgc2 En1          | Logic operators          |                                               |          | Conf   |
| Lgc2 En2          | 8                        |                                               |          |        |
| Lgc2 En3          |                          |                                               |          |        |
| Lgc8 En           | Logic 8 operator         | Both operators disabled                       |          | Conf   |
| -                 |                          | Both operators enabled                        |          |        |
| Lin16Pt En        | Input linearisation      | Both input linearisation tables disabled      |          | Conf   |
|                   |                          | Both input linearisation tables enabled       |          |        |
| Load En           | Load enable              | Load disabled                                 | As order | Conf   |
|                   |                          | Load enabled                                  | code     |        |
| Loop En           | Loop enable              | Control Loop disabled                         | As order | Conf   |
|                   |                          | Control Loop enabled                          | code     |        |
| Math2 En1         | Analogue (Maths)         | All 8 maths operators disabled                | As order | Conf   |
| Math2 En2         | Operators                | All 8 maths operators enabled                 | code     |        |
| Math2 En3         |                          |                                               |          |        |
| Mux8 En           | Multiplexor              | □ □ □ □ All four multiplexors disabled        |          | Conf   |
|                   |                          | All four multiplexors enabled                 |          |        |
| Poly En           | Polynomial               | Both polynomials disabled                     |          | Conf   |
|                   | linearisation block      | Both polynomials enabled                      |          |        |
| Progr En          | Programmer               | Programmer disabled                           |          | Conf   |
|                   |                          | Programmer enabled                            |          |        |
| RTClock En        | Real time clock          | Real time clock disabled                      |          | Conf   |
|                   |                          | Real time clock enabled                       |          |        |
| SwOver En         | Switch over block        | Switch over block disabled                    |          | Conf   |
|                   |                          | Switch over block enabled                     |          |        |
| Timer En          | Timers                   | □ □ □ □ All four timers disabled              | As order | Conf   |
|                   |                          | All four timers enabled                       | code     |        |
| Totalise En       | Totalisers               | Both totalisers disabled                      |          | Conf   |
|                   |                          | Both totalisers enabled                       |          |        |
| TrScale En        | Transducer scaling       | Both transducer inputs disabled               |          | Conf   |
|                   |                          | Both transducer inputs enabled                |          |        |

62.



2 rue René Laennec 51500 Taissy France E-mail:hvs

Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Part No HA027988 Issue 3.0 Aug-04

E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

**Engineering Handbook** 

| UsrVal En1<br>UsrVal En1 | User values                                                                       | Image: Constraint of the state of the s | Conf |
|--------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ZirconiaEn               | To enable the<br>Zirconia function<br>block. This is only<br>available if ordered | <ul> <li>Zirconia block disabled</li> <li>Zirconia block enabled</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |

Note:- The left most flag indicates the first instance e.g. Alarm1.

# 5.4 Display Formatting

The display which will shown in Operator levels 1 to 3 may be customised.

This is achieved in the 'Inst' configuration list using the sub-header 'Dis'.

#### 5.4.1 To Customise the Display

The controller must be in Configuration level. Then:-

| Do This                                                                                                              | The Display You Should See | Additional Notes                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Press as many times as necessary until 'Inst' is displayed</li> <li>Press or to select 'Dis'</li> </ol>     | Loop Summary On            | If a parameter from, say, the previous display<br>is being shown, then it will be necessary to<br>press () to return to the top of the list                                                                                                                                                                                                                              |
| <ol> <li>Press To scroll to the first parameter - 'Home Page'</li> <li>Press  or  to change the selection</li> </ol> | Loop Summary On            | In operator level the instrument, by default,<br>shows 'Loop' parameters in the HOME<br>display.<br>The HOME display may also show:-<br>Program Programmer parameters<br>Custx Up to 8 views may be customised<br>Cust1 will select the first<br>Access Access parameters<br>The following table shows the full list of<br>parameters available to customise the display |

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

| List Header: Ir            | nst                                                                                                                                       | Sub-header: Disp                           |                                                                |                 |                 |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------|-----------------|-----------------|
| Name                       | Parameter Description                                                                                                                     | Value<br>or  to o                          | :hange                                                         | Default         | Access<br>Level |
| Units                      | Instrument temperature units as shown in the top right of the display                                                                     | C<br>F<br>K                                | ° Celsius<br>° Fahrenheit<br>Kelvin                            |                 | L3              |
| Home Page                  | Configures which set of parameters are<br>shown in the message display of the<br>HOME view when the controller is in<br>operator level.   | Loop<br>Program<br>Custom 1 to 8<br>Access | Loop summary<br>Program summary<br>Customised<br>Access        | Loop            | Conf            |
| Home Timeout               | In operator level the controller can be<br>made to revert to the HOME display<br>after a fixed time following selection of<br>other pages | Off to<br>0:01 to 1:00 hr                  | Off = the controller will<br>not revert to the HOME<br>display | 0:01<br>(1 min) | Conf            |
| Loop Summary               | A summary of the Loop parameters are<br>displayed in the message centre<br>(section 1.16.) in the selected operating<br>level             | On<br>Off                                  | Enabled<br>Disabled                                            | On              | Conf            |
| Prog Summary               | A summary of the Program parameters<br>are displayed in the message centre<br>(section 1.16.) in the selected operating<br>level          | On<br>Off                                  | Enabled<br>Disabled                                            | On              | Conf            |
| Alarm<br>Summary           | Enables/disables the alarm summary page in operator levels                                                                                | On<br>Off                                  | Enabled<br>Disabled                                            | On              | Conf            |
| Prog Edit                  | Defines the level in which a program may be edited                                                                                        | Level1<br>Level2<br>Level3                 |                                                                | Level3          | Conf            |
| Control Page<br>Alarm Page | Defines in which level the control<br>summary page is shown<br>Defines in which level the alarm page is                                   | Off<br>Level1<br>Level2                    |                                                                | Level1          | Conf            |
| Bar Scale Max              | shown<br>Upper limit of the vertical bar graph<br>scale                                                                                   | -99999 to 99999                            |                                                                | 1000            | Conf            |
| Bar Scale Min              | Lower limit of the vertical bar graph scale                                                                                               | -99999 to 99999                            |                                                                | 0               | Conf            |
| Main Bar Val               | Main bar graph value                                                                                                                      | This can be wire                           | d to any parameter.                                            |                 | L3              |
| Aux1 Bar Val               | First auxiliary bar graph value                                                                                                           | See also section                           |                                                                |                 | L3              |
| Aux2 Bar Val               | Second auxiliary bar graph value                                                                                                          |                                            |                                                                |                 | L3              |
| Language                   | To select the language (when available)                                                                                                   | English (French,                           | German, Italian)                                               |                 | Conf            |

Aug-04

Part No HA027988 Issue 3.0

### 5.4.2 Bar Graph (3504 0nly)

The bar graph shown on the left hand side of the display can be wired to any analogue parameter. The example shown in section 26.11.1. shows the bar graph wired to the main PV. Markers can also be placed on the bar graph which can be used to indicate minimum and maximum points. These points are defined by the parameters 'Aux1 Bar Val' and 'Aux2 Bar Val' respectively. The markers may be fixed in position by leaving these two parameters unwired and entering an analogue value. Alternatively, they may be wired – in the following example they are wired to low and high alarm points.



Figure 5-2: Bar Graph Markers

# 5.5 Instrument information

This list provides information about the controller as follows:-

| List Header:<br>Inst | Sub-header: Inf                                                                                                                     |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Name                 | Parameter Description                                                                                                               |
| Inst Type            | The type of instrument e.g., 3504, can be used over comms to identify the instrument being communicated with                        |
| Version Num          | The version of instrument software. Can be used to identify the build of software being used and hence what features are available. |
|                      | If an upgrade is performed, this will be updated and the instrument non volatile ram will be re-initialised.                        |
| Serial Num           | The unique serial number of the instrument. This is set at the factory and cannot be changed.                                       |
| Passcode1            | Codes required to remotely upgrade the controller cost options                                                                      |
| Passcode2            | Codes required to remotely upgrade the controller cost options                                                                      |
| Passcode3            | Codes required to remotely upgrade the controller cost options                                                                      |
| Company ID           | Allows a unique identification number to be entered for the particular controller                                                   |

Part No HA027988 Issue 3.0



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Aug-04

# 5.6 Instrument Diagnostics

This list provides fault finding diagnostic information as follows:-

| List Header:<br>Inst | Sub-header: D                         | iag                   |                                                                                                                                                                                             |  |  |  |
|----------------------|---------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Name                 | Parameter Desc                        | Parameter Description |                                                                                                                                                                                             |  |  |  |
| CPU % Free           | This is the amou                      | nt of f               | ree CPU Time left. It shows the percentage of the tasks ticks that are idle.                                                                                                                |  |  |  |
| CPU % Min            | A benchmark of                        | the lo                | west reached value of the CPU free percentage.                                                                                                                                              |  |  |  |
| Con Ticks            | This is the numb                      | er of t               | icks that have elapsed while the instrument was performing the control Task.                                                                                                                |  |  |  |
| Max Con Tick         | A benchmark of control Task           | the m                 | aximum number of ticks that have elapsed while the instrument was performing the                                                                                                            |  |  |  |
| UI Ticks             | This is the numb                      | er of t               | icks that have elapsed while the instrument was performing the user interface Task.                                                                                                         |  |  |  |
| Max UI Ticks         | A benchmark of user interface Ta      | the m<br>Isk          | aximum number of ticks that have elapsed while the instrument was performing the                                                                                                            |  |  |  |
| Clear Stats          | Resets the instru                     | ment                  | performance bench marks.                                                                                                                                                                    |  |  |  |
| Power FF             | The measurement                       | nt of tl              | he instruments line voltage.                                                                                                                                                                |  |  |  |
|                      | This may be wire<br>for mains voltage | ed to t<br>e fluct    | he control loop PFF Value parameter such that the control algorithm can compensate uations when the instrument is connected to the same phase as the heater.                                |  |  |  |
| Error Count          | The number of e<br>occurrence will b  | errors<br>pe logg     | logged since the last Clear Log. Note: If an error occurs multiple times only the first ged, but each event will increment the count.                                                       |  |  |  |
| Error1               | The first error<br>to occur           | 0                     | There is no error                                                                                                                                                                           |  |  |  |
| Error2               | The second<br>error to occur          | 1                     | Bad or unrecognised module ident. A module has been inserted and has a bad or unrecognised ident. Either the module is damaged or the module is unsupported.                                |  |  |  |
| Error3               | The third error<br>to occur           | 3                     | Factory calibration data bad. The factory calibration data has been read from an I/O module and has not passed the checksum test. Either the module is damaged or has not been initialised. |  |  |  |
| Error4               | The fourth<br>error to occur          | 4                     | Module changed for one of a different type. A module has been changed for one of a different type. The configuration may now be incorrect                                                   |  |  |  |
| Error5               | The fifth error<br>to occur           | 5                     | I/O Chip DFC1 communication failure. The onboard generic I/O Chip DFC1 will not communicate. This could indicate a build fault in the instrument.                                           |  |  |  |
| Error6               | The sixth error to occur              | 6                     | I/O Chip DFC2 communication failure. The onboard generic I/O Chip DFC2 will not communicate. This could indicate a build fault in the instrument.                                           |  |  |  |
| Error7               | The seventh<br>error to occur         | 7                     | I/O Chip DFC3 communication failure. The onboard generic I/O Chip DFC3 will not communicate. This could indicate a build fault in the instrument.                                           |  |  |  |
| Error8               | The eight error<br>to occur           | 10                    | Calibration data write error. An error has occurred when attempting to write calibration data back to an I/O module's EE.                                                                   |  |  |  |
|                      |                                       | 11                    | Calibration data write error. An error occurred when trying to read calibration data back from the EE on an I/O module.                                                                     |  |  |  |
|                      |                                       | 13                    | Fixed PV input error. An error occurred whilst reading data from the fixed PV Input EE.                                                                                                     |  |  |  |
|                      |                                       | 18                    | Checksum error. The checksum of the NVol Ram has failed. The NVol is considered corrupt and there the instrument configuration may be incorrect.                                            |  |  |  |
|                      |                                       | 20                    | Resistive identifier error. An error occurred when reading the resistive identifier from an i/o module. The module may be damaged.                                                          |  |  |  |
|                      |                                       | 33                    | Unused                                                                                                                                                                                      |  |  |  |
|                      |                                       | 34                    | Unused                                                                                                                                                                                      |  |  |  |



Aug-04

Part No HA027988 Issue 3.0

|                 |                                                                                                                           | 43     | Invalid custom linearisation table. One of the custom linearisation tables is invalid.<br>Either it has failed checksum tests or the table downloaded to the instrument is<br>invalid. |  |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                 |                                                                                                                           | 49     | Unused                                                                                                                                                                                 |  |  |
|                 |                                                                                                                           | 53     | Unused                                                                                                                                                                                 |  |  |
|                 |                                                                                                                           | 54     | Unused                                                                                                                                                                                 |  |  |
|                 |                                                                                                                           | 55     | The Instrument wiring is either invalid or corrupt.                                                                                                                                    |  |  |
|                 |                                                                                                                           | 56     | Non Vol write to volatile. An attempt was made to perform a checksummed Non Vol write to a non checksumed address.                                                                     |  |  |
|                 |                                                                                                                           | 58     | Recipe load failure. The selected recipe failed to load.                                                                                                                               |  |  |
| Clear Log       | Clears the error lo                                                                                                       | og en  | tries and count.                                                                                                                                                                       |  |  |
| String Count    | Number of User S                                                                                                          | String | s Defined                                                                                                                                                                              |  |  |
| String Space    | Space Available For User Strings.                                                                                         |        |                                                                                                                                                                                        |  |  |
| Segments Left   | Number of Available Program Segments                                                                                      |        |                                                                                                                                                                                        |  |  |
|                 | Gives the number of unused program segments. Each time a segment is allocated to a program, this value is reduced by one. |        |                                                                                                                                                                                        |  |  |
| Ctl Stack Free  | Control Stack Free Space (words)                                                                                          |        |                                                                                                                                                                                        |  |  |
|                 | The number of words of un-used stack for the control task                                                                 |        |                                                                                                                                                                                        |  |  |
| Comms Stack     | Comms Stack Free                                                                                                          | e Spa  | ce (words)                                                                                                                                                                             |  |  |
| Free            | The number of w                                                                                                           | ords o | of un-used stack for the comms task                                                                                                                                                    |  |  |
| UI Stack Free   | HMI Stack Free Sp                                                                                                         | bace ( | words)                                                                                                                                                                                 |  |  |
|                 | The number of words of un-used stack for the HMI task                                                                     |        |                                                                                                                                                                                        |  |  |
| Disp Stack Free | Display Driver Stack Free Space (words)                                                                                   |        |                                                                                                                                                                                        |  |  |
|                 | The number of words of un-used stack for the display driver task.                                                         |        |                                                                                                                                                                                        |  |  |
| Idle Stack Free | Idle Stack Free Sp                                                                                                        | ace (  | words)                                                                                                                                                                                 |  |  |
|                 | The number of w                                                                                                           | ords o | of un-used stack for the idle (background) task.                                                                                                                                       |  |  |

Part No HA027988 Issue 3.0 Aug-04



# 6. CHAPTER 6 PROCESS INPUT

The process input list characterizes and ranges the signal from the input sensor. The Process Input parameters provide the following features:-

| Input Type and               | Thermocouple (TC) and 3-wire resistance thermometer (RTD) temperature detectors                                                                                                                                                                                                                                                                 |  |  |  |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| linearisation                | Volts, mV or mA input through external shunt or voltage divider, available with linear, square root or custom linearisation                                                                                                                                                                                                                     |  |  |  |  |
|                              | See the table in section 6.2.1. for the list of input types available                                                                                                                                                                                                                                                                           |  |  |  |  |
| Display units and resolution | The change of display units and resolution will apply to all the parameters related to the process variable                                                                                                                                                                                                                                     |  |  |  |  |
| Input filter                 | First order filter to provide damping of the input signal. This may be necessary to prevent the effects of excessive process noise on the PV input from causing poor control and indication. More typically used with linear process inputs.                                                                                                    |  |  |  |  |
| Fault detection              | Sensor break is indicated by an alarm message 'Sbr'. For thermocouple it detects when the impedance is greater than pre-defined levels; for RTD when the resistance is less than $12\Omega$ .                                                                                                                                                   |  |  |  |  |
| User calibration             | Either by simple offset or by slope and gain. See section 6.2.6. for further details.                                                                                                                                                                                                                                                           |  |  |  |  |
| Over/Under range             | When the input signal exceeds the input span by more than 5% the PV is shown as 'HHHHH' or 'LLLLL'. The check is executed twice: before and after user calibration and offset adjustments. The same indications apply when the display is not able to show the PV, for example, when the input is greater than 9999.9°C with one decimal point. |  |  |  |  |

# 6.1 To select PV Input

Select Level 3 or Configuration level as described in Chapter 2.

Then press 🗐 as many times as necessary until the header 'PVInput' ' is displayed

# 6.2 **Process Input Parameters**

| List Header - PV Input |                                               | Sub-headers           | Sub-headers: None                                                 |         |                 |  |  |
|------------------------|-----------------------------------------------|-----------------------|-------------------------------------------------------------------|---------|-----------------|--|--|
| Name                   | Parameter Description                         | Value                 | to change                                                         | Default | Access<br>Level |  |  |
| Ю Туре                 | PV input type.<br>Selects input linearisation | Thermoco<br>uple      | Thermocouple                                                      |         | Conf<br>R/O L3  |  |  |
|                        | and range                                     | RTD                   | Platinum resistance thermometer                                   |         |                 |  |  |
|                        |                                               | Log10                 | Logarithmic                                                       |         |                 |  |  |
|                        |                                               | HZ Volts              | High impedance voltage input (typically used for zirconia probes) |         |                 |  |  |
|                        |                                               | Volts                 | Voltage                                                           |         |                 |  |  |
|                        |                                               | mA                    | milli amps                                                        |         |                 |  |  |
|                        |                                               | 80mV                  | 80 milli volts                                                    |         |                 |  |  |
|                        |                                               | 40mV                  | 40 milli volts                                                    |         |                 |  |  |
|                        |                                               | Pyrometer             | Pyrometer                                                         |         |                 |  |  |
| Lin Type               | Input linearisation                           | see section           |                                                                   |         | Conf            |  |  |
|                        |                                               | 6.2.1.                |                                                                   |         | R/O L3          |  |  |
| Units                  | Display units used for units conversion       | see section<br>6.2.3. |                                                                   |         | Conf            |  |  |
| Res'n                  | Resolution                                    | XXXXX to<br>X.XXXX    |                                                                   |         | Conf            |  |  |

68.



| CJC Type    | To select the cold junction compensation method                                                                                              | Internal<br>0°C                                                | See description in se<br>further details     | ction 6.2.2. for                         | Internal | Conf   |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|------------------------------------------|----------|--------|
|             |                                                                                                                                              | 45°C                                                           |                                              |                                          |          |        |
|             |                                                                                                                                              | 50°C                                                           |                                              |                                          |          |        |
|             |                                                                                                                                              | External                                                       |                                              |                                          |          |        |
|             |                                                                                                                                              | Off                                                            |                                              |                                          |          |        |
| SBrk Type   | Sensor break type                                                                                                                            | Low                                                            | Sensor break will be<br>impedance is greater | detected when its<br>than a 'low' value  |          | Conf   |
|             |                                                                                                                                              | High                                                           | Sensor break will be<br>impedance is greater | detected when its<br>than a 'high' value |          |        |
|             |                                                                                                                                              | Off                                                            | No sensor break                              | -                                        |          |        |
| SBrk Alarm  | Sets the alarm action when                                                                                                                   | ManLatch                                                       | Manual latching                              | see also the alarm                       |          | L3     |
|             | a sensor break condition is detected                                                                                                         | NonLatch                                                       | No latching                                  | Chapter 11 Alarms                        |          |        |
|             |                                                                                                                                              | Off                                                            | No sensor break alar                         | m                                        |          |        |
| Disp Hi     | Configures the maximum displayable reading.                                                                                                  | see also sect                                                  | ion 6.2.7. Display Rea                       | ding                                     |          | L3     |
| Disp Lo     | Configures the minimum                                                                                                                       |                                                                | Disp Hi                                      |                                          |          | L3     |
|             | displayable reading.                                                                                                                         | -                                                              |                                              |                                          |          |        |
| Range Hi    | Configures the maximum (electrical) input level.                                                                                             |                                                                | Disala                                       |                                          |          | L3     |
| Range Lo    | Configures the minimum<br>(electrical) input level                                                                                           |                                                                | Disp Lo                                      |                                          |          | L3     |
| Fallback    | Fallback Strategy                                                                                                                            | Downscale                                                      | Meas Value = Input r                         | range lo - 5%                            |          | Conf   |
|             | See also section 6.2.5.                                                                                                                      | Upscale                                                        | Meas Value = Input r                         | ange Hi + 5%                             |          |        |
|             |                                                                                                                                              | Fall Good                                                      | Meas Value = Fallbac                         | :k PV                                    | -        |        |
|             |                                                                                                                                              | Fall Bad                                                       | Meas Value = Fallbac                         | :k PV                                    |          |        |
|             |                                                                                                                                              | Clip Good                                                      | Meas Value = Input r                         | ange Hi/lo +/- 5%                        |          |        |
|             |                                                                                                                                              | Clip Bad                                                       | Meas Value = Input r                         | ange Hi/lo +/- 5%                        |          |        |
| Fallback PV | Fallback value                                                                                                                               | 1                                                              | Instrument range                             |                                          |          | Conf   |
|             | See also section 6.2.5.                                                                                                                      |                                                                |                                              |                                          |          |        |
| Filter Time | Input filter time.                                                                                                                           |                                                                | Off to 500:00 (hhh:m                         | ım)                                      | 0:00.4   | L3     |
|             | An input filter provides damp<br>input signal. This may be new<br>prevent the effects of excess<br>the PV input.                             | oing of the<br>cessary to<br>ive noise on                      | m:ss.s to hh:mm:ss to                        | ) hhh:mm                                 |          |        |
| Emiss       | Emissivity. This parameter or<br>the input is configured for Py<br>is used to compensate for th<br>reflectivity produced by diffe<br>surface | nly appears if<br>vrometer. It<br>e different<br>erent type of | Off 0.1 to 1.0                               |                                          | 1.0      | L3     |
| Meas Value  | The current electrical value c<br>input                                                                                                      | of the PV                                                      |                                              |                                          |          | R/O    |
| PV          | The current value of the PV i linearisation                                                                                                  | nput after                                                     | Instrument range                             |                                          |          | R/O    |
| Offset      | Used to add a constant offse                                                                                                                 | t to the PV                                                    | Instrument range                             |                                          |          | L3     |
|             | see section 6.2.6.                                                                                                                           |                                                                |                                              |                                          |          |        |
| CJC Temp    | Reads the temperature of the terminals at the thermocoup connection                                                                          | e rear<br>le                                                   |                                              |                                          |          | L3 R/O |
| SBrk Value  | Sensor break Value                                                                                                                           |                                                                |                                              |                                          |          | R/O    |
|             | Used for diagnostics only, an the sensor break trip value                                                                                    | d displays                                                     |                                              |                                          |          |        |
| Lead Res    | The measured lead resistance                                                                                                                 | e on the RTD                                                   |                                              |                                          |          | R/O    |

Part No HA027988 Issue 3.0 Aug-04



| Cal State | Calibration state<br>Calibration of the PV Input<br>is described in Chapter 25. | Idle                       |                                                                                                                                             | Conf<br>L3 R/O |
|-----------|---------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Status    | PV Status<br>The current status of the<br>PV.                                   | 0<br>1<br>2<br>3<br>4<br>5 | Normal operation<br>Initial startup mode<br>Input in sensor break<br>PV outside operating limits<br>Saturated input<br>Uncalibrated channel | R/O            |

### 6.2.1 Input Types and Ranges

Used to select the linearisation algorithm required by the input sensor.

A selection of default sensor linearisations are provided for thermocouples/RTD's and Pyrometers.

If linearisation type is linear a y=mx+c relationship is applied between DisplayHigh/DisplayLow and RangeHigh/RangeLow.

If the sensor being used has a special type of linearisation 3 custom tables may be configured by downloading an appropriate table from an extensive library

| Input Type                                                                                                            |                                  | Min    | Max   | Units | Min Range | Max   | Units |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|-------|-------|-----------|-------|-------|
|                                                                                                                       |                                  | Range  | Range |       |           | Range |       |
| J                                                                                                                     | Thermocouple type J              | -210   | 1200  | °C    | -238      | 2192  | ٥F    |
| К                                                                                                                     | Thermocouple type K              | -200   | 1372  | °C    | -238      | 2498  | ٥F    |
| L                                                                                                                     | Thermocouple type L              | -200   | 900   | ٥C    | -238      | 1652  | ٥F    |
| R                                                                                                                     | Thermocouple type R              | -50    | 1700  | ٥C    | -58       | 3124  | ٥F    |
| В                                                                                                                     | Thermocouple type B              | 0      | 1820  | ٥C    | -32       | 3308  | ٥F    |
| Ν                                                                                                                     | Thermocouple type N              | -200   | 1300  | °C    | -238      | 2372  | ٥F    |
| Т                                                                                                                     | Thermocouple type T              | -200   | 400   | °C    | -238      | 752   | ٥F    |
| S                                                                                                                     | Thermocouple type S              | -50    | 1768  | °C    | -58       | 3214  | ٥F    |
| PL2                                                                                                                   | Platinell                        | 0      | 1369  | ٥C    | 32        | 2466  | ٥F    |
| С                                                                                                                     | Thermocouple type C              |        |       |       |           |       |       |
| PT100                                                                                                                 | Pt100 resistance thermometer     | -200   | 850   | ٥C    | -328      | 1562  | ٥F    |
| Linear                                                                                                                | mV or mA linear input            | -10.00 | 80.00 |       |           |       |       |
| SqRoot                                                                                                                | Square root                      |        |       |       |           |       |       |
| Tbl 1                                                                                                                 | Customised linearisation table 1 |        |       |       |           |       |       |
| Tbl 2                                                                                                                 | Customised linearisation table 2 |        |       |       |           |       |       |
| Tbl 3                                                                                                                 | Customised linearisation table 3 |        |       |       |           |       |       |
| If no custom linearisation table has been loaded the message 'No tbl 1, 2 or 3' is displayed and must be acknowledged |                                  |        |       |       |           |       |       |

70.

#### 6.2.2 CJC Type

A thermocouple measures the temperature difference between the measuring junction and the reference junction. The reference junction, therefore, must either be held at a fixed known temperature or accurate compensation be used for any temperature variations of the junction.

#### 6.2.2.1 Internal Compensation

The controller is provided with a temperature sensing device which senses the temperature at the point where the thermocouple is joined to the copper wiring of the instrument and applies a corrective signal.

Where very high accuracy is needed and to accommodate multi-thermocouple installations, larger reference units are used which can achieve an accuracy of ±0.1°C or better. These units also allow the cables to the instrumentation to be run in copper. The reference units are contained basically under three techniques. Ice-Point, Hot Box and Isothermal

#### The Ice-Point 6.2.2.2

There are usually two methods of feeding the EMF from the thermocouple to the measuring instrumentation via the ice-point reference. The bellows type and the temperature sensor type.

The bellows type utilises the precise volumetric increase which occurs when a known quantity of ultra pure water changes state from liquid to solid. A precision cylinder actuates expansion bellows which control power to a thermoelectric cooling device. The temperature sensor type uses a metal block of high thermal conductance and mass, which is thermally insulated from ambient temperatures. The block temperature is lowered to 0°C by a cooling element, and maintained there by a temperature sensing device.

Special thermometers are obtainable for checking the 0°C reference units and alarm circuits that detect any movement from the zero position can be fitted.

#### 6.2.2.3 The Hot Box

Thermocouples are calibrated in terms of EMF generated by the measuring junctions relative to the reference junction at 0°C. Different reference points can produce different characteristics of thermocouples, therefore referencing at another temperature does present problems. However, the ability of the hot box to work at very high ambient temperatures, plus a good reliability factor has led to an increase in its usage. The unit can consist of a thermally insulated solid aluminium block in which the reference junctions are embedded.

The block temperature is controlled by a closed loop system, and a heater is used as a booster when initially switching on. This booster drops out before the reference temperature, usually between 55°C and 65°C, is reached, but the stability of the hot box temperature is now important. Measurements cannot be taken until the hot box reaches the correct temperature.

#### 6.2.2.4 **Isothermal Systems**

The thermocouple junctions being referenced are contained in a block which is heavily thermally insulated. The junctions are allowed to follow the mean ambient temperature, which varies slowly. This variation is accurately sensed by electronic means, and a signal is produced for the associated instrumentation. The high reliability factor of this method has favoured its use for long term monitoring.

#### 6.2.2.5 CJC Options in 3500 Series

0: CJC measurement at instrument terminals

- 1: CJC based on external junctions kept at 0C (Ice Point)
- 2: CJC based on external junctions kept at 45C (Hot Box)
- 3: CJC based on external junctions kept at 50C (Hot Box)
- 4: CJC based on independent external measurement
- 5: CIC switched off

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29


#### 6.2.3 Display Units

None

Abs Temp °C/°F/°K,

V, mV, A, mA,

PH, mmHg, psi, Bar, mBar, %RH, %, mmWG, inWG, inWW, Ohms, PSIG, %O2, PPM, %CO2, %CP, %/sec,

RelTemp °C/°F/°K(rel),

sec, min, hrs,

#### 6.2.4 Sensor Break Value

The controller continuously monitors the impedance of a transducer or sensor connected to any analogue input (including plug in modules). This impedance, expressed as a percentage of the impedance which causes the sensor break flag to trip, is a parameter called 'SBrk Trip Imp' and is available in the parameter lists associated with both Standard and Module inputs of an analogue nature.

The table below shows the typical impedance which causes sensor break to trip for various types of input and high and low 'SBrk Impedance parameter settings. The impedance values are only approximate ( $\pm$ 25%) as they are not factory calibrated.

| PV Input (Also applies to the Analogue Input module) |                 |                       |  |
|------------------------------------------------------|-----------------|-----------------------|--|
| mV input ( <u>+</u> 40mV or <u>+</u> 80mV)           |                 | Volts ( <u>+</u> 10V) |  |
| SBrk Impedance – High                                | ~ 12KΩ          |                       |  |
| SBrk Impedance - Low                                 | ~ 3KΩ           |                       |  |
| Volts input (-3V to +10V) and HZ Vo                  | olts input (-1. | 5 to 2V)              |  |
| SBrk Impedance – High                                |                 | ~ 20ΚΩ                |  |
| SBrk Impedance - Low                                 |                 | ~ 5ΚΩ                 |  |

#### 6.2.5 Fallback

A Fallback strategy may be used to configure the default value for the PV in case of an error condition. The error may be due an out of range value, a sensor break, lack of calibration or a saturated input.

The Status parameter would indicate the error condition and could be used to diagnose the problem.

Fallback has several modes and may be associated with the Fallback PV parameter

The Fallback PV may be used to configure the value assigned to the PV in case of an error condition. The Fallback parameter should be configured accordingly.

The fallback parameter may be configured so as to force a Good or Bad status when in operation. This in turn allows the user to choose to override or allow error conditions to affect the process.



72.

### 6.2.6 PV Offset

All ranges of the controller have been calibrated against traceable reference standards. This means that if the input type is changed it is not necessary to calibrate the controller. There may be occasions, however, when you wish to apply an offset to the standard calibration to take account of known errors within the process, for example, a known sensor error or a known error due to the positioning of the sensor. In these instances it is not advisable to change the reference calibration, but to apply a user defined offset.

It is also possible to apply a two point offset and this is described in the next section.

PV Offset applies a single offset over the full display range of the controller and can be adjusted in Level 3. It has the effect of moving the curve up a down about a central point as shown in the example below:-



#### 6.2.6.1 Example: To Apply an Offset:-

- Connect the input of the controller to the source device which you wish to calibrate to
- Set the source to the desired calibration value
- The controller will display the current measurement of the value
- If the display is correct, the controller is correctly calibrated and no further action is necessary. If you wish to offset the reading:-

| Do This The |                                                                                                                | The Display You Should See                                                        | Additional Notes                               |
|-------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|
| 7.          | Select Level 3 or Conf as<br>described in Chapter 2. Then<br>press () to select <b>'PVInput'</b>               | <b>PUInput</b><br>010 Type ThermoCp1<br>SBrk Alarm ManLatch<br>Filter Time 0:00.4 |                                                |
| 8.<br>9.    | Press () to scroll to ' <b>Offset'</b><br>Press () or () to adjust the<br>offset to the reading you<br>require | PVInput<br>Meas Value 0.00<br>PV 2<br>00ffset \$2.0                               | In this case an offset of 2.0 units is applied |

Part No HA027988 Issue 3.0 Aug-04



#### 6.2.7 PV Input Scaling

PV input scaling applies to the linear mV input range only. This is set by configuring the 'IO Type' parameter to 40mV, 80mV, mA, Volts or HZVolts. Using an external burden resistor of  $2.49\Omega$ , the controller can be made to accept 4-20mA from a current source. Scaling of the PV input will match the displayed reading to the electrical input levels from the transducer. PV input scaling can only be adjusted in configuration level and is not provided for direct thermocouple, pyrometer or RTD inputs.

The graph below shows an example of input scaling, where it is required to display 75.0 when the input is 4mV and 500.0 when the input is 20mV.

If the input exceeds <u>+5%</u> of the Range Lo or Range Hi settings, sensor break will be displayed.



#### 6.2.7.1 Example: To Scale a Linear Input:-

|     | Do This                                                                            | The Display You Should See                                      | Additional Notes                                                     |
|-----|------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| 1.  | Select Conf as described in Chapter 2.<br>Then press () to select <b>'PVInput'</b> | <b>PUInput</b><br>010 Type +mA<br>Lin Type Linear<br>Units None |                                                                      |
| 2.  | Press 💮 to scroll to <b>'IO Type'</b>                                              | PUIneut.<br>10 Tee ma                                           | Linearisation type and resolution should also be set as appropriate. |
| 3.  | Press Or To <b>'mA'</b> , 'Volts' or mV                                            | 0Lin Type ‡Linear<br>Units None                                 |                                                                      |
| 4.  | Press 🕝 to scroll to <b>'Disp Hi'</b>                                              | PUInput                                                         | Resolution set to XXXX.X in this example                             |
| 5.  | Press ( or ( to '500.00'                                                           | SBrk 199e Low<br>SBrk Alarm NonLatch<br>(Disp Hi \$500.0        |                                                                      |
| 6.  | Press 🕝 to scroll to <b>'Disp Lo'</b>                                              | PUIneut.                                                        |                                                                      |
| 7.  | Press ( or ( to <b>'75.00'</b>                                                     | Disp Hi 500.0<br>Uisp Lo \$75.0                                 |                                                                      |
| 8.  | Press 🕑 to scroll to <b>'Range Hi'</b>                                             | PUInput                                                         | The controller will read 500.0 for a mA input of 20.00               |
| 9.  | Press ( ) or ( ) to <b>'20.000'</b>                                                | Disp Lo 75.0<br>URange Hi \$20.000                              |                                                                      |
| 10. | Press 🕑 to scroll to <b>'Range Lo'</b>                                             | PUInput.                                                        | The controller will read 75.0 for a mA input of 4.00                 |
| 11. | Press Or 👽 to ' <b>4.000'</b>                                                      | Ranse Hi 20.000<br>WRanse Lo \$4.000                            |                                                                      |

74.



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Part No HA027988 Issue 3.0

Aug-04

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy FranceE-mail:hvssystem@hvssystem.comFax: 03 26 85 19 08, Tel : 03 26 82 49 29Site web : www.hvssystem.com

# 7. CHAPTER 7 LOGIC INPUT/OUTPUT

There are two logic IO channels, standard on all controllers, which may be configured independently as inputs or outputs. Connections for these are made to terminals LA and LB, with LC as the common for both. Parameters in the '**LgcIO**' lists allow each IO to be configured independently under the sub-headers LA and LB. Note, that the two IO are not isolated from each other since they share a common return. They are, however, isolated from other connections.

# 7.1 To select Logic IO list

Select Level 3 or Configuration level as described in Chapter 2.

Then press () as many times as necessary until the header **'LgcIO'** ' is displayed

# 7.2 Logic IO Parameters

| List Header - Lg  | List Header - LgclO                                                           |                    | Sub-header - LA and LB      |         |        |  |  |
|-------------------|-------------------------------------------------------------------------------|--------------------|-----------------------------|---------|--------|--|--|
| Name              | Parameter Description                                                         | Value              |                             | Default | Access |  |  |
| to select         |                                                                               | or 🕑 to a          | change                      |         | Level  |  |  |
| Ю Туре            | To configure the type of input or                                             | Input              | Logic input                 | Input   | Conf   |  |  |
|                   | output                                                                        | ContactCl          | Contact closure input       |         | R/O L3 |  |  |
|                   |                                                                               | OnOff              | On off output               |         |        |  |  |
|                   |                                                                               | Time Prop          | Time proportioning output   |         |        |  |  |
|                   |                                                                               | ValvRaise          | Motorised valve position    |         |        |  |  |
|                   |                                                                               | See Note 1         | output – raise off LA offiy |         |        |  |  |
| Invert            | Sets the sense of the logic input or                                          | No                 | No inversion                | No      | Conf   |  |  |
|                   | σατρατ                                                                        | Yes                | Inverted                    |         |        |  |  |
| The next five par | rameters are only shown when 'IO Type' =                                      | 'Time Prop' output | ts                          |         |        |  |  |
| Min OnTime        | Minimum output on/off time.                                                   | Auto               | Auto = 20ms. This is the    | Auto    | L3     |  |  |
|                   | Prevents relays from switching too                                            | 0.01 to 150.00     | fastest allowable update    |         |        |  |  |
|                   | rapidly                                                                       | seconds            | rate for the output         |         |        |  |  |
| Disp Hi           | The maximum displayable reading                                               | 0.00 to 100.00     |                             | 100.00  | L3     |  |  |
| Disp Lo           | The minimum displayable reading                                               | 0.00 to 100.00     |                             | 0.00    | L3     |  |  |
| Range Hi          | The maximum (electrical) input/output level                                   | 0.00 to 100.00     |                             |         | L3     |  |  |
| Range Lo          | The minimum (electrical) input/output level                                   | 0.00 to 100.00     |                             |         | L3     |  |  |
| Meas Val          | The current value of the output                                               | 0                  | On (unless Invert = Yes)    |         | L3 R/O |  |  |
|                   | demand signal.                                                                | 1                  | Off (unless Invert = Yes)   |         |        |  |  |
| PV                | When configured as an output, this is                                         | 0 to 100           |                             |         | L3     |  |  |
|                   | the desired output value; when                                                | or                 |                             |         |        |  |  |
|                   | configured as an input the current<br>state of the digital input is displayed | 0 to 1 (OnOff)     |                             |         |        |  |  |
| The following pa  | arameters are additional if 'IO Type' = 'Valv                                 | e Rais'            |                             |         |        |  |  |
| Inertia           | Set this parameter to match the inertia                                       | 0.0 to 9999 9      |                             | 0.0     | 13     |  |  |
|                   | (if any) of the motor                                                         | secs               |                             | 0.0     |        |  |  |
| Backlash          | Compensates for any backlash which                                            | 0.0 to 9999.9      |                             | 0.0     | L3     |  |  |
|                   | may be present in the linkages                                                | secs               |                             |         |        |  |  |
| Cal State         | Calibration status                                                            | Idle               | This is only applicable to  |         | L3     |  |  |
|                   |                                                                               | Raise              | valve position outputs      |         |        |  |  |
|                   |                                                                               | Lower              |                             |         |        |  |  |





PV can be wired to the output of a function block. For example if it is used for control it may be wired to the control loop output (Ch1 Output) as shown in the example in section 4.1.1.

**Note 1:** LA and LB work in a complementary manner in Valve Positioning (VP) applications. When LA is set to ValvRais LB is automatically set to ValvLowr. IOType for LB is NOT alterable in VP applications. Configuration settings applied to LA will be applied to LB automatically.

# 7.2.1 Example: To Configure a Time Proportioning Logic Output

Select configuration level as described in section 2.1.3. Then:-

|     | Do This                                                                  | The Display You Should See                   | Additional Notes |
|-----|--------------------------------------------------------------------------|----------------------------------------------|------------------|
| 13. | From any display press ()<br>until the <b>'LgcIO'</b> page is<br>reached | LacIO LA<br>ØIO Type ‡Time Prop<br>Invert No |                  |
| 14. | Press ( ) or ( ) as necessary to select <b>'LA'</b> or <b>'LB'</b>       | Min OnTime Auto                              |                  |
| 15. | Press () to scroll to <b>'IO Type'</b>                                   |                                              |                  |
| 16. | Press ( ) or ( ) to 'Time<br>Prop'                                       |                                              |                  |

# 7.2.2 Example: To Calibrate a VP Output

The 'Cal State' parameter in this list allows you to fully open or fully close the valve when it is required to calibrate a feedback potentiometer used with a bounded VP control.

| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o This                                 | The Display You Sho                           | ould See                    | Additional Notes                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------|-----------------------------|------------------------------------------------------------------------------|
| 1. From the form the | LgcIO' 'LA' page,<br>to scroll to 'Cal | LecIO<br>GIO Tere tua<br>Invert<br>Min OnTime |                             | The loop is temporarily disconnected to allow the valve to drive fully open. |
| 2. Press (A)<br>'Raise'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or 🔍 to select                         | LecIO<br>Inertia<br>Backlash<br>GCal State    | С<br>0.0<br>0.0<br>41<br>Ф. |                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | LacIO<br>Inertia<br>Backlash<br>(Cal State    | LT<br>9.0<br>9.0<br>Raise   |                                                                              |

3. Now select the page header which contains the Potentiometer Input module

4. Press (a) to scroll to **'Cal State'** in the <u>Potentiometer list</u>

- 5. Press or v to select 'Hi'. Then 'Confirm'. The controller will automatically calibrate to the potentiometer position. The messages 'Go' and 'Busy' will be displayed during this time. If successful the message 'Passed' will be displayed and if unsuccessful 'Failed' will be displayed. A fail could be due to the potentiometer value being out of range.
- 6. Drive the valve fully closed using 'Lower' in the 'LgcIO' page. Then repeat 3, 4 and 5 for the 'Lo' calibration point

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

### 7.2.3 Logic Output Scaling

If the output is configured for time proportioning control, it can be scaled such that a lower and upper level of PID demand signal can limit the operation of the output value.

By default, the output will be fully off for 0% power demand, fully on for 100% power demand and equal on/off times at 50% power demand. You can change these limits to suit the process. It is important to note, however, that these limits are set to safe values for the process. For example, for a heating process it may be required to maintain a minimum level of temperature. This can be achieved by applying an offset at 0% power demand which will maintain the output on for a period of time. Care must be taken to ensure that this minimum on period does not cause the process to overheat.

If Range Hi is set to a value <100% the time proportioning output will switch at a rate depending on the value - it will not switch fully on.

Similarly, if Range Lo is set to a value >0% it will not switch fully off.



Figure 7-1: Time Proportioning Output

### 7.2.4 Example: To Scale a Proportioning Logic Output

Select level 3 or configuration level as described in section 2.1.3. Then:-

|    | Do This                                                                              | The Display You Should See   |                |    | Additional Notes                                                                                       |
|----|--------------------------------------------------------------------------------------|------------------------------|----------------|----|--------------------------------------------------------------------------------------------------------|
| 1. | From the <b>'LgclO'</b> page, press <sup>(IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</sup> | Lec.IO                       | Auto<br>199 99 | LA |                                                                                                        |
| 2. | Press or 💽 to set the PID demand limit. This will normally be 100%                   | GDisp Lo                     | ¢0.00          |    |                                                                                                        |
| 3. | Repeat the above for <b>'Disp Lo'</b> .<br>This will normally be set to zero         |                              |                |    |                                                                                                        |
| 4. | Press () to scroll to <b>'Range</b><br>Hi'                                           | LacIO<br>Disp Lo<br>Papas Hi | 0.00<br>90.00  | LA | In this example the output will switch<br>on for 8% of the time when the PID<br>demand signal is at 0% |
| 5. | Press ( ) or ( ) to set the upper output limit.                                      | URanse Lo                    | ¢8.00          |    | Similarly, it will remain on for 90% of the time when the demand signal is                             |
| 6. | Repeat the above for <b>'Range</b><br>Lo' to set the lower switching<br>limit        |                              |                |    | at 100%                                                                                                |



Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

# 8. CHAPTER 8 AA RELAY OUTPUT

A changeover relay is standard on all 3500 series controllers and is connected to terminals AA (normally open), AB (common) and AC (normally closed).

Parameters in the 'RlyAA' list allow the relay functions to be set up.

# 8.1 To Select AA Relay List

Select Level 3 or Configuration level as described in Chapter 2.

Then press 🗐 as many times as necessary until the header 'RlyAA' is displayed

# 8.2 AA Relay Parameters

| List Header - R   | уАА                                                                                        | No Sub-headers                       |                                                                                                                                                                    |         |                 |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|--|--|--|
| Name<br>to select | Parameter<br>Description                                                                   | Value                                | to change                                                                                                                                                          | Default | Access<br>Level |  |  |  |
| Ю Туре            | To configure the                                                                           | OnOff                                | On off output                                                                                                                                                      |         | Conf            |  |  |  |
|                   | function for the relay                                                                     | Time Prop                            | Time proportioning output                                                                                                                                          |         | R/O L3          |  |  |  |
| Invert            | To change the normal operating state of the relay                                          | No                                   | Relay de-energised when output demand off<br>Relay energised when output demand on<br>This is the normal setting if the relay is used<br>for control               |         | Conf<br>R/O L3  |  |  |  |
|                   |                                                                                            | Yes                                  | Relay energised when output demand off<br>Relay de-energised when output demand on<br>This is the normal setting if the relay is used<br>for an alarm              |         |                 |  |  |  |
| The next five par | The next five parameters are only shown when 'IO Type' = 'Time Prop' outputs               |                                      |                                                                                                                                                                    |         |                 |  |  |  |
| Min OnTime        | The minimum logic on<br>time (in seconds).<br>Prevents relay from<br>switching too rapidly | Auto<br>0.01 to<br>150.00<br>seconds | If set to 0 - Auto the minimum on time will<br>be 110mS. For a time proportioning output<br>the on/off times at 50%power is as shown:-<br>110ms 110ms<br>On<br>Off | Auto    | L3              |  |  |  |
| Disp Hi           | Maximum output<br>demand signal                                                            | 0.00 to<br>100.00                    |                                                                                                                                                                    | 100.00  | L3              |  |  |  |
| Disp Lo           | Minimum output<br>demand signal                                                            | 0.00 to<br>100.00                    |                                                                                                                                                                    | 0.00    | L3              |  |  |  |
| Range Hi          | Electrical output high                                                                     | 0.00 to<br>100.00                    |                                                                                                                                                                    |         | L3              |  |  |  |
| Range Lo          | Electrical output low                                                                      | 0.00 to<br>100.00                    |                                                                                                                                                                    |         | L3              |  |  |  |
| Meas Val          | Status of the digital                                                                      | 0                                    | On (unless Invert = Yes)                                                                                                                                           |         | L3              |  |  |  |
|                   | output.                                                                                    | 1                                    | Off (unless Invert = Yes)                                                                                                                                          |         | R/O L3          |  |  |  |
| PV                | The current (analogue)<br>value of the output                                              | 0 to 100<br>or<br>0 to 1<br>(OnOff)  |                                                                                                                                                                    |         | L3<br>R/O L3    |  |  |  |

PV can be wired to the output of a function block. For example if it is used for control it may be wired to the control loop output (Ch1 Output) as shown in the example in section 4.1.1.

If it is used for an alarm it may be wired to the 'Output' parameter in an alarm list.



80.

### 8.2.1 Example: To Wire the AA Relay to an Alarm

In this example the relay will be made to operate when analogue alarm 1 occurs.



Select configuration level as described in section 2.1.3. Then:-

|                                                              | Do This                                                               | The Display You Should See                       | Additional Notes                                                                                                                              |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ol> <li>From an until the reached</li> <li>Press</li> </ol> | y display press<br><b>'RlyAA'</b> page is<br>to scroll to <b>'PV'</b> | RlyAA<br>Invert Yes<br>Meas Val 0<br>OPV \$0     | Set 'IO Typ' to 'OnOff'<br>Set 'Invert' to 'Yes'<br>This locates the parameter to be wired to                                                 |  |
| 19. Press A/<br>'WireFre                                     | MAN to display<br>om'                                                 | WireFrom<br>B                                    | If the parameter is already wired the display shown below is shown                                                                            |  |
| 20. Press<br>many tir<br>select th                           | (as instructed) as necessary to <b>AnAlm'</b> page                    | WireFrom<br>AnAlm ¢1<br>GOutPut                  | This selects Analogue Alarm 1. The relay<br>can also be wired to operate on one or<br>more alarms.<br>This 'copies' the parameter to be wired |  |
| 21. Press                                                    | or 💽 to select '1'                                                    |                                                  | from                                                                                                                                          |  |
| 22. Press                                                    | to scroll to <b>'Output'</b>                                          |                                                  |                                                                                                                                               |  |
| 23. Press <b>A</b> /                                         | MAN                                                                   | <b>AnAlm1</b><br>Output<br>B+Cancel G+OK         | This 'pastes' the parameter to 'PV'                                                                                                           |  |
| 24. Press C<br>confirm                                       | as instructed to                                                      | <b>RlyAA</b><br>Invert Yes<br>Meas Val Ø<br>PV Ø | Note the arrow next to the parameter which has been wired                                                                                     |  |

# 8.2.2 Relay Output Scaling

If the output is configured for time proportioning control, it can be scaled such that a lower and upper level of PID demand signal can limit the operation of the output value.

The procedure for this is the same as logic outputs described in section 7.2.3.





2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

# 9. CHAPTER 9 MODULE CONFIGURATION

Plug in IO modules provide additional analogue and digital IO. These modules can be fitted in any of six slots. The terminal connections for these are given in Installation and Basic Operation, Chapter 1.

The type and position of any modules fitted in the controller is shown in the order code printed on the label on the side of the controller. This can be checked against the order code in Chapter 1.

The module part number is printed on the side of the plastic case of the module.

All modules fitted are identified in the controller under the page heading 'ModIDs'.

Modules are available as single channel, two channel or three channel IO as listed below:-

| Module                                   | Order Code | Idents Displayed As | Number of<br>Channels | Module Part No. |
|------------------------------------------|------------|---------------------|-----------------------|-----------------|
| No module fitted                         | XX         | No Module           |                       |                 |
| Change over relay                        | R4         | COvrRelay           | 1                     | AH025408U002    |
| 2 pin relay                              | R2         | Form A Relay        | 1                     | AH025245U002    |
| Dual relay                               | RR         | DualRelay           | 2                     | AH025246U002    |
| Triple logic output                      | ТР         | TriLogic            | 3                     | AH025735U002    |
| Isolated single logic output             | LO         | SinLogic            | 1                     | AH025735U002    |
| Triac                                    | T2         | Triac               | 1                     | AH025253U002    |
| Dual triac                               | тт         | DualTriac           | 2                     | AH025409U002    |
| DC control                               | D4         | DCControl           | 1                     | AH025728U003    |
| DC retransmission                        | D6         | DCRetran            | 1                     | AH025728U002    |
| Analogue input<br>module                 | АМ         | DCInput             | 1                     | AH025686U004    |
| Triple logic input                       | TL         | TriLogIP            | 3                     | AH025317U002    |
| Triple contact input                     | тк         | TriConIP            | 3                     | AH025861U002    |
| Potentiometer input                      | VU         | PotIP               | 1                     | AH025864U002    |
| 24V transmitter supply                   | MS         | TXPSU               | 1                     | AH025862U002    |
| 5V or<br>10VdcTransducer<br>power supply | G3         | TransPSU            | 1                     | AH026306U002    |

Note: If an incorrect module is fitted (for example, from a 2000 series controller), 'Bad Ident' will be displayed.

#### Table 9-1: I/O Modules

Parameters for the above modules, such as input/output limits, filter times and scaling of the IO, can be adjusted in the Module IO pages

82.

Aug-04

# 9.1 To Fit a New Module

IO modules can be fitted in any of six slots in the 3504 and any of three slots in 3508 controllers.

Communications modules can be fitted in any of two slots

A list of available IO modules is given in Table 9-1

These modules are fitted simply by sliding them into the relevant position as shown below.

When a module has been changed, the controller will power up with the message **'!:Error Module Changed'**. This must be acknowledged by pressing (a) and (c) together.



IO Modules



Figure 9-1: View of the Plug-in Modules

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

#### 9.2 **Module Identification**

Press 🗐 until the list header **'ModIDs'** is displayed. The type of IO module fitted in any of the six slots (three if 3508) is shown. The identification of the module fitted is shown in Table 9-1.

#### 9.3 Module Types

The tables in the following pages list the parameters available for the different modules.

#### 9.3.1 **Relay, Logic or Triac Outputs**

These modules are used to provide an output to a two state output device such as a contactor, SSR, motorized valve driver, etc.

| List Header - M  | od                                                | Sub-header                                                    | s: xA (triac, changeover or 2-pin relay);        |         |                |  |  |
|------------------|---------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|---------|----------------|--|--|
|                  |                                                   | xA and xC (dual relay, dual triac); xA, xB, xC (triple logic) |                                                  |         |                |  |  |
|                  |                                                   | x = the num                                                   | nber of the slot in which the module is f        | itted   | _              |  |  |
| Name             | Parameter Description                             | Value                                                         |                                                  | Default | Access         |  |  |
| to select        |                                                   | ▲ or ▼ to change                                              |                                                  |         | Level          |  |  |
| ldent            | Channel type                                      | Relay                                                         | Any relay output                                 |         | L3 R/O         |  |  |
|                  |                                                   | Logic Out                                                     | Logic output                                     |         |                |  |  |
|                  |                                                   | Triac                                                         | Triac or dual triac output                       |         |                |  |  |
| Ю Туре           | To configure the function of                      | OnOff                                                         | On off output                                    |         | Conf           |  |  |
|                  | the relay                                         | Time Prop                                                     | Time proportioning output                        | R/O L   |                |  |  |
|                  |                                                   | ValvRais                                                      | Motor valve position raise. See note 1           |         |                |  |  |
| Invert           | To change the normal operating state of the relay | No                                                            | Relay de-energised when output demand off        |         | Conf<br>R/O L3 |  |  |
|                  |                                                   |                                                               | Relay energised when output demand on            |         |                |  |  |
|                  |                                                   |                                                               | Normal setting if the relay is used for control  |         |                |  |  |
|                  |                                                   | Yes                                                           | Relay energised when output demand off           |         |                |  |  |
|                  |                                                   |                                                               | Relay de-energised when output demand on         |         |                |  |  |
|                  |                                                   |                                                               | Normal setting if the relay is used for an alarm |         |                |  |  |
| Meas Value       | Current state of the output                       | 0                                                             | Off (if 'lnvert' = 'No')                         |         | L3 R/O         |  |  |
|                  |                                                   | 1                                                             | On (if 'Invert' = 'No')                          |         |                |  |  |
| PV               | Normally wired to the output                      | 0                                                             | Demand for output to be off (if                  |         | Conf           |  |  |
|                  | of a function block such as PID                   | 1                                                             | 'Invert' = 'No')                                 |         | R/O L3         |  |  |
|                  | actuator                                          |                                                               | = 'No')                                          |         |                |  |  |
|                  |                                                   |                                                               | Alterable if not wired                           |         |                |  |  |
| Status           | Module status                                     | ОК                                                            | Normal operation                                 |         | R/O            |  |  |
|                  |                                                   |                                                               | See note 2                                       |         |                |  |  |
| The next seven p | barameters are only shown when 'I                 | D Type' = 'Tin                                                | ne Prop' outputs                                 |         |                |  |  |
| Min OnTime       | Minimum output on/off time.                       | Auto                                                          | Auto = 110mS                                     | 5 sec   | L3             |  |  |
|                  | Prevents relay from switching too rapidly         | 0.01 to<br>150.00 sec                                         |                                                  |         |                |  |  |



| Disp Hi          | Maximum output demand<br>signal                                                        | 0.00 to<br>100.00      |       |                                            | 100.00 | L3     |
|------------------|----------------------------------------------------------------------------------------|------------------------|-------|--------------------------------------------|--------|--------|
| Disp Lo          | Minimum output demand<br>signal                                                        | 0.00 to<br>100.00      |       |                                            | 0.00   | L3     |
| Range Hi         | Electrical output high                                                                 | 0.00 to<br>100.00      |       |                                            |        | L3     |
| Range Lo         | Electrical output low                                                                  | 0.00 to<br>100.00      |       |                                            |        | L3     |
| Meas Value       | Status of the digital output.                                                          | 0                      | On (  | unless Invert = Yes)                       |        | L3     |
|                  |                                                                                        | 1                      | Off ( | (unless Invert = Yes)                      |        | R/O L3 |
| PV               | The current (analogue) value of the output                                             | 0 to 100               |       |                                            |        | R/O L3 |
| The following pa | rameters are additional if <b>'IO Type</b>                                             | ' = 'Valve Rai         | s'    |                                            |        | •      |
| Inertia          | Set this parameter to match<br>the inertia (if any) of the motor                       | 0.0 to 9999.9          | secs  |                                            | 0.0    | L3     |
| Backlash         | This parameter compensates<br>for any backlash which may be<br>present in the linkages | 0.0 to 9999.9 secs     |       | 0.0                                        | L3     |        |
| Cal State        | Calibration state                                                                      | Idle<br>Raise<br>lower |       | See also section 7.2.2. for an explanation |        | L3     |

#### Note 1

A triple logic output, a dual relay output or a dual triac output module may be used for a valve position output. If Valve Raise is configured on channel output A then Valve Lower is automatically allocated to channel output C. Channel output B (triple logic output) is only available as an on/off or time proportioning output.

Valve raise/lower is not available on a single isolated logic output

#### Note 2

Status displays a message giving the current operating condition of the module. These may be:-

- 0: Normal operation
- 1: Initial startup mode
- 2: At least one input in sensor break
- 3: At least one input in sensor break
- 4: At least one PV outside operating limits
- 5: At least one PV outside operating limits
- 6: At least one saturated input
- 7: At least one saturated input
- 8: At least one uncalibrated channel
- 9: At least one uncalibrated channel
- 25: No Module

The number is the enumeration of the status.

Part No HA027988 Issue 3.0 Aug-04



# 9.3.2 Single Isolated Logic Output

This provides isolation from other IO and should be used, for example, in applications where the sensor and the output device may be at supply potential. It is only available as a time proportioning or on/off output.

| List Header - Mod |                                                           | Sub-headers: xA       |                                                  |             |                |  |  |
|-------------------|-----------------------------------------------------------|-----------------------|--------------------------------------------------|-------------|----------------|--|--|
| Name              | Parameter Description                                     | Value                 |                                                  | Default     | Access         |  |  |
| to select         |                                                           | 🛆 or 💌                | to change                                        | · · · · · · | Level          |  |  |
| Ident             | Channel type                                              | Logic Out             | Logic output                                     |             | L3 R/O         |  |  |
| Ю Туре            | To configure the function of                              | OnOff                 | On off output                                    |             | Conf           |  |  |
|                   | the relay                                                 | Time Prop             | Time proportioning output                        |             | R/O L3         |  |  |
| Invert            | To change the normal operating state of the relay         | No                    | Relay de-energised when output demand off        |             | Conf<br>R/O L3 |  |  |
|                   |                                                           |                       | Relay energised when output demand on            |             |                |  |  |
|                   |                                                           |                       | Normal setting if the relay is used for control  |             |                |  |  |
|                   |                                                           | Yes                   | Relay energised when output demand off           |             |                |  |  |
|                   |                                                           |                       | Relay de-energised when output demand on         |             |                |  |  |
|                   |                                                           |                       | Normal setting if the relay is used for an alarm |             |                |  |  |
| Meas Value        | Current state of the output                               | 0                     | Off (if 'lnvert' = 'No')                         |             | L3 R/O         |  |  |
|                   |                                                           | 1                     | On (if 'lnvert' = 'No')                          |             |                |  |  |
| PV                | Normally wired to the output                              | 0                     | Demand for output to be off (if                  |             | Conf           |  |  |
|                   | of a function block such as PID output to control a plant | 1                     | (Invert' = (No))                                 |             | R/O L3         |  |  |
|                   | actuator                                                  |                       | = 'No')                                          |             |                |  |  |
|                   |                                                           |                       | Alterable if not wired                           |             |                |  |  |
| Status            | Module status                                             | ОК                    | Normal operation                                 |             | R/O            |  |  |
|                   |                                                           |                       | See note 2                                       |             |                |  |  |
| The next six para | ameters are only shown when 'IO T                         | ype' = 'Time          | Prop' outputs                                    |             |                |  |  |
| Min OnTime        | Minimum output on/off time.                               | Auto                  | Auto = 110mS                                     | 5 sec       | L3             |  |  |
|                   | Prevents relay from switching too rapidly                 | 0.01 to<br>150.00 sec |                                                  |             |                |  |  |
| Disp Hi           | Maximum output demand signal                              | 0.00 to<br>100.00     |                                                  | 100.00      | L3             |  |  |
| Disp Lo           | Minimum output demand signal                              | 0.00 to<br>100.00     |                                                  | 0.00        | L3             |  |  |
| Range Hi          | Electrical output high                                    | 0.00 to<br>100.00     |                                                  |             | L3             |  |  |
| Range Lo          | Electrical output low                                     | 0.00 to<br>100.00     |                                                  |             | L3             |  |  |
| Meas Value        | Status of the digital output.                             | 0                     | On (unless Invert = Yes)                         |             | L3             |  |  |
|                   |                                                           | 1                     | Off (unless Invert = Yes)                        |             | R/O L3         |  |  |



## 9.3.3 DC Control Output or DC Retransmission

The DC output module is used as a control output to interface with an analogue actuator such as valve driver or thyristor unit.

The DC retransmission module is used to provide an analogue output signal proportional to the value which is being measured. It may be used for chart recording or retransmit a signal to another controller. This function is often performed through digital communications where greater accuracy is required.

| List Header - Mod |                             | Sub-headers: xA          |                                          |          |         |  |  |
|-------------------|-----------------------------|--------------------------|------------------------------------------|----------|---------|--|--|
|                   |                             | x = the num              | ber of the slot in which the module is f | fitted   |         |  |  |
| Name              | Parameter Description       | Value                    |                                          | Default  | Access  |  |  |
| to select         |                             | ▲ or ▼                   | to change                                |          | Level   |  |  |
| Ident             | Channel type                | DC Output                | DC Output                                |          | L3 R/O  |  |  |
|                   |                             | DCRetran                 | DC retransmission                        |          |         |  |  |
| Ю Туре            | To configure the output     | Volts                    | Volts dc                                 | As order | Conf L3 |  |  |
|                   | drive signal                | mA                       | milli-amps dc                            | code     | R/O     |  |  |
| Res'n             | Display resolution          | XXXXX to                 |                                          |          | Conf    |  |  |
|                   |                             | X.XXXX                   |                                          |          |         |  |  |
| Disp Hi           | Display high reading        | -99999 to 99             | 9999 decimal points depend on resolution | 100      | L3      |  |  |
| Disp Lo           | Display low reading         | HHHHH = ou               | ut of high range                         | 0        | L3      |  |  |
|                   |                             | LLLLL = out of low range |                                          |          |         |  |  |
| Range Hi          | Electrical high input level | 0 to 10                  |                                          | 10       | L3      |  |  |
| Range Lo          | Electrical low input level  |                          |                                          | 0        | L3      |  |  |
| Meas Value        | The current output value    |                          |                                          |          | R/O     |  |  |
| PV                |                             |                          |                                          |          | L3      |  |  |
| Cal State         | Calibration state           | Idle                     | Non calibrating state                    | Idle     | Conf    |  |  |
|                   |                             | Lo                       | Select calibration of the low position   |          |         |  |  |
|                   |                             | Hi                       | Select calibration of the high position  |          |         |  |  |
|                   |                             | Confirm                  | Confirm the position to calibrate        |          |         |  |  |
|                   |                             | Go                       | Start calibration                        |          |         |  |  |
|                   |                             | Abort                    | Abort calibration                        |          |         |  |  |
|                   |                             | Busy                     | Controller automatically calibrating     |          |         |  |  |
|                   |                             | Passed                   | Calibration OK                           |          |         |  |  |
|                   |                             | Failed                   | Calibration bad                          |          |         |  |  |
|                   |                             | Accept                   | To store the new values                  |          |         |  |  |
| Status            | Working condition of the    | ОК                       | Normal operation                         |          | R/O     |  |  |
|                   | module                      |                          | See note 2                               |          |         |  |  |
|                   |                             |                          |                                          |          |         |  |  |

Part No HA027988 Issue 3.0 Aug-04



# 9.3.4 Analogue Input

The analogue input module provides additional analogue inputs for multi-loop controllers or other multi input measurements.

| List Header - M | od                                                     | Sub-headers: >                                     | κA                                                                                    |                                                          |          |        |
|-----------------|--------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------|----------|--------|
|                 |                                                        | x = the number                                     | r of the slot i                                                                       | n which the module i                                     | s fitted |        |
| Name            | Parameter Description                                  | Value                                              |                                                                                       |                                                          | Default  | Access |
| to select       |                                                        | ▲ or ▼ to                                          | change                                                                                |                                                          |          | Level  |
| Ident           | Channel type                                           | DC Input                                           |                                                                                       |                                                          |          | L3 R/O |
| Ю Туре          | PV input type Selects input                            | Thermocouple                                       | Thermocou                                                                             | ple                                                      |          | Conf   |
|                 | linearisation and range                                | RTD                                                | Platinum re                                                                           | sistance thermometer                                     |          | L3 R/O |
|                 |                                                        | Log10                                              | Logarithmic                                                                           | :                                                        |          |        |
|                 |                                                        | HZ Volts                                           | High imped<br>(typically us<br>probes)                                                | ance voltage input<br>sed for zirconia                   |          |        |
|                 |                                                        | Volts                                              | Voltage                                                                               |                                                          |          |        |
|                 |                                                        | mA                                                 | milli amps                                                                            |                                                          |          |        |
|                 |                                                        | 80mV                                               | 80 milli volt                                                                         | ts                                                       |          |        |
|                 |                                                        | 40mV                                               | 40 milli volt                                                                         | ts                                                       |          |        |
|                 |                                                        | Pyrometer                                          | Pyrometer                                                                             |                                                          |          |        |
| Lin Type        | Input linearisation                                    | see section<br>9.3.5                               |                                                                                       |                                                          |          | L3 R/O |
| Units           | Controller units                                       | see section<br>9.3.6                               |                                                                                       |                                                          |          | Conf   |
| Res'n           | Resolution                                             | XXXXX to<br>X.XXXX                                 |                                                                                       |                                                          |          | Conf   |
| CJC Type        | To select the cold junction compensation method        | Internal<br>0°C<br>45°C<br>50°C<br>External<br>Off | See descrip<br>for further                                                            | See description in section 6.8.2.<br>for further details |          | Conf   |
| SBrk Type       | Sensor break type                                      | Low                                                | Sensor brea<br>when its im<br>than a 'low'                                            | k will be detected<br>pedance is greater<br>value        |          | Conf   |
|                 |                                                        | High                                               | Sensor break will be detected<br>when its impedance is greater<br>than a 'high' value |                                                          | -        |        |
|                 |                                                        | Off                                                | No sensor b                                                                           | oreak                                                    |          |        |
| SBrk Alarm      | Sets the alarm action when a sensor break condition is | ManLatch                                           | Manual<br>latching                                                                    | see also Chapter<br>11 'Alarms'                          |          | L3     |
|                 | detected                                               | NonLatch                                           | No<br>latching                                                                        |                                                          |          |        |
|                 |                                                        | Off                                                | No sensor b                                                                           | oreak alarm                                              |          |        |
| Disp Hi         | Display reading high                                   | see section                                        |                                                                                       |                                                          |          | L3     |
| Disp Lo         | Display reading low                                    | 9.4.1.                                             |                                                                                       |                                                          |          | L3     |
| Range Hi        | Input high value                                       |                                                    |                                                                                       |                                                          |          | L3     |
| Range Lo        | Input low value                                        |                                                    |                                                                                       |                                                          |          | L3     |
| Fallback        | Configures the default value in                        | Downscale                                          | Same as PV                                                                            | input                                                    |          | Conf   |

88.



Part No HA027988 Issue 3.0 Aug-04

 2 rue René Laennec 51500 Taissy France
 E-mail:hvssy

 Fax: 03 26 85 19 08, Tel : 03 26 82 49 29
 Site web : ww

|             | case of an erroneous Upscale                                               |                               | See section 4.1.6. for further         |          |             |
|-------------|----------------------------------------------------------------------------|-------------------------------|----------------------------------------|----------|-------------|
|             | condition. The error may be                                                | Fall Good                     | explanation                            |          |             |
|             | sensor break, lack of                                                      | Fall Bad                      |                                        |          |             |
|             | calibration or a saturated                                                 | Clip Good                     |                                        |          |             |
|             | input.                                                                     | Clip Bad                      |                                        |          |             |
|             | The Status parameter would indicate the error condition                    |                               |                                        |          |             |
|             | and could be used to diagnose                                              |                               |                                        |          |             |
|             | the problem.                                                               |                               |                                        |          |             |
|             | Fallback has several modes and                                             |                               |                                        |          |             |
|             | may be associated with the<br>Fallback PV parameter                        |                               |                                        |          |             |
| Fallback PV | To set the value of PV during a s                                          | ensor break                   | Instrument range                       | +        | Conf        |
| Filter Time | Input filter time                                                          |                               | Off to 500:00 (missis) (hhimmiss)      | 0.00 4   | 13          |
|             | An input filter provides damping                                           | of the input                  | or (hh:mm)                             | 0.00.4   |             |
|             | signal. This may be necessary to                                           | prevent the                   |                                        |          |             |
|             | effects of excessive noise on the                                          | PV input.                     |                                        |          |             |
| Emiss       | Emissivity. This parameter only a                                          | ppears if the                 | Off 0.1 to 1.0                         | 1.0      | L3          |
|             | compensate for the different ref                                           | r. It is used to<br>lectivity |                                        |          |             |
|             | produced by different type of su                                           | rface                         |                                        |          |             |
| Meas Value  | The current electrical value of the PV input                               |                               |                                        |          | L3 R/O      |
| PV          | The current value of the PV input in engineering                           |                               | Instrument range                       |          | L3 R/O      |
| -           | units                                                                      |                               |                                        |          |             |
| Offset      | Single offset value applied to the input                                   |                               | Instrument range                       |          | L3          |
|             | see section 6.8.6.                                                         |                               |                                        |          |             |
| CJC Temp    | Reads the temperature of the rear terminals at the thermocouple connection |                               |                                        |          | Conf<br>R/O |
| SBrk Value  | Used for diagnostics only, and di break trip value.                        | splays the sensor             |                                        |          | L3 R/O      |
| Lead Res    | The measured lead resistance on                                            | the RTD                       |                                        |          | L3 R/O      |
| Cal State   | Calibration state                                                          | Idle                          | Non calibrating state                  |          | Conf        |
|             |                                                                            | Lo                            | Select calibration of the low position |          |             |
|             |                                                                            | Hi                            | Select calibration of the high         |          |             |
|             |                                                                            | Confirm                       | Confirm the position to calibrate      |          |             |
|             |                                                                            | Go                            | Start calibration                      |          |             |
|             |                                                                            | Abort                         | Abort calibration                      |          |             |
|             |                                                                            | Busy                          | Controller automatically calibrating   |          |             |
|             |                                                                            | Passed                        | Calibration OK                         |          |             |
|             |                                                                            | Failed                        | Calibration bad                        |          |             |
|             |                                                                            | Accept                        | To store the new values                |          |             |
| Status      | The current status for the                                                 | 0                             | Normal operation                       | <u> </u> | L3 R/O      |
|             | channel.                                                                   | 1                             | Initial startup mode                   |          |             |
|             |                                                                            | 2                             | Input in sensor break                  |          |             |
|             |                                                                            | 3                             | PV outside operating limits            |          |             |
|             |                                                                            | 4                             | Saturated input                        |          |             |
|             |                                                                            | 5                             | Uncalibrated channel                   |          |             |

Part No HA027988 Issue 3.0 Aug-04



# 9.3.5 Input Types and Ranges

| Input Type |                                 | Min Range | Max Range | Units | Min Range | Max<br>Range | Units |
|------------|---------------------------------|-----------|-----------|-------|-----------|--------------|-------|
| J          | Thermocouple type J             | -210      | 1200      | °C    | -238      | 2192         | ٥F    |
| К          | Thermocouple type K             | -200      | 1372      | ۰C    | -238      | 2498         | ٥F    |
| L          | Thermocouple type L             | -200      | 900       | ۰C    | -238      | 1652         | ٥F    |
| R          | Thermocouple type R             | -50       | 1700      | °C    | -58       | 3124         | ٥F    |
| В          | Thermocouple type B             | 0         | 1820      | ۰C    | 32        | 3308         | ٥F    |
| Ν          | Thermocouple type N             | -200      | 1300      | °C    | -238      | 2372         | ٥F    |
| Т          | Thermocouple type T             | -200      | 400       | °C    | -238      | 752          | ٥F    |
| S          | Thermocouple type S             | -50       | 1768      | ۰C    | -58       | 3214         | ٥F    |
| PL2        | Thermocouple Platinel II        | 0         | 1369      | °C    | 32        | 2466         | ٥F    |
| С          | Thermocouple type C             |           |           |       |           |              |       |
| PT100      | Pt100 resistance thermometer    | -200      | 850       | ۰C    | -328      | 1562         | ٥F    |
| Linear     | mV or mA linear input           | -10.00    | 80.00     |       |           |              |       |
| SqRoot     | Square root                     |           |           |       |           |              |       |
| Custom     | Customised linearisation tables |           |           |       |           |              |       |

# 9.3.6 Display Units

None

Abs Temp °C/°F/°K,

V, mV, A, mA,

PH, mmHg, psi, Bar, mBar, %RH, %, mmWG, inWG, inWW, Ohms, PSIG, %O2, PPM, %CO2, %CP, %/sec,

RelTemp °C/°F/°K(rel),

Custom 1, Custom 2, Custom 3

sec, min, hrs,



Aug-04

# 9.3.7 Triple Logic Input and Triple Contact Input

This module may be used to provide additional logic inputs.

| List Header - Mod |                             | Sub-headers: xA, xB, xC                                  |                              |         |        |  |  |
|-------------------|-----------------------------|----------------------------------------------------------|------------------------------|---------|--------|--|--|
|                   |                             | x = the number of the slot in which the module is fitted |                              |         |        |  |  |
| Name              | Parameter Description       | Value                                                    |                              | Default | Access |  |  |
| to select         |                             | ▲ or ▼ to change                                         |                              |         | Level  |  |  |
| Ident             | Channel type                | Logic Inp                                                | Logic input or contact input |         | L3 R/O |  |  |
| Ю Туре            | Function of the module      | Input                                                    |                              |         | L3 R/O |  |  |
| PV                | State of the measured input | 0                                                        | Demand for output to be off  |         | Conf   |  |  |
|                   |                             | 1                                                        | Demand for output to be on   |         | R/O L3 |  |  |
| Status            | Module status               | ОК                                                       | Normal operation             |         | R/O    |  |  |
|                   |                             |                                                          | See note 2                   |         |        |  |  |

#### 9.3.8 Potentiometer Input

This module may be connected to a feedback potentiometer fitted to a motorized valve driver, or to provide a measured value from any other potentiometer input between 330 $\Omega$  and 15K $\Omega$ . The excitation voltage is 0.5Vdc.

| List Header - Mod                                 |                                                                                                     | Sub-headers: xA                                                        |                                                                                                |         |                 |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------|-----------------|--|--|
|                                                   |                                                                                                     | x = the number of the slot in which the module is fitted               |                                                                                                |         |                 |  |  |
| Name<br>to select                                 | Parameter Description                                                                               | Value                                                                  | to change                                                                                      | Default | Access<br>Level |  |  |
| ldent                                             | Channel type                                                                                        | Pot Input                                                              | Potentiometer input                                                                            |         | L3 R/O          |  |  |
| Units                                             | Engineering units.                                                                                  | None                                                                   |                                                                                                |         | Conf            |  |  |
| Res'n                                             | Display resolution                                                                                  | XXXXX to<br>X.XXXX                                                     |                                                                                                |         | Conf            |  |  |
| SBrk type                                         | SBrk type Allows one of three strategies to be configured if                                        |                                                                        | Sensor break will be detected when its impedance is greater than a 'low' value                 |         | Conf            |  |  |
| potentiometer brea<br>indicated. Same as<br>input | potentiometer break is<br>indicated. Same as analogue<br>input                                      | High                                                                   | Sensor break will be detected when its<br>impedance is greater than a 'high'<br>value          |         | Conf            |  |  |
|                                                   |                                                                                                     | Off                                                                    | No sensor break                                                                                |         | Conf            |  |  |
| SBrk Alarm                                        | To configure the alarm<br>action should the<br>potentiometer become<br>disconnected                 | Off<br>NonLatch<br>ManLatch                                            | No sensor break alarm<br>Non latching sensor break alarm<br>Manual latching sensor break alarm |         | L3              |  |  |
| Fallback                                          | Condition to be adopted if<br>the 'Status' parameter ≠ OK                                           | Clip Bad<br>Clip Good<br>Fall Bad<br>Fall Good<br>Upscale<br>DownScale |                                                                                                |         | Conf            |  |  |
| Fallback PV                                       |                                                                                                     | -99999 to 99                                                           | 999                                                                                            |         | Conf            |  |  |
| Filter Time                                       | To adjust the input filter<br>time constant to reduce the<br>effect of noise on the input<br>signal | Off or 0:00.1                                                          | to 500:00                                                                                      | 0:00:04 | L3              |  |  |

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

|                                                                          | 1                                                                                            |                                   |                                                                                          |      |        |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------|------|--------|
| Meas Value                                                               | The current value in engineering units                                                       |                                   |                                                                                          |      | L3 R/O |
| PV                                                                       | Requested output/current<br>input signal level (after<br>linearisation where<br>applicable). |                                   |                                                                                          |      | L3 R/O |
| SBrk Value                                                               | Used for diagnostics only,<br>and displays the sensor break<br>trip value.                   |                                   |                                                                                          |      | L3 R/O |
| Cal State                                                                | This parameter allows the                                                                    | Idle                              | Non calibrating state                                                                    | Idle | Conf   |
|                                                                          | controller to be calibrated                                                                  | Lo                                | Select calibration of the low position                                                   |      | L3 R/O |
|                                                                          | minimum positions of the                                                                     | Hi                                | Select calibration of the high position                                                  |      |        |
| potentiometer.                                                           | Confirm                                                                                      | Confirm the position to calibrate |                                                                                          |      |        |
| Adjust the pot to minimum                                                | Go                                                                                           | Start calibration                 |                                                                                          |      |        |
|                                                                          | position, select <b>'Lo'</b> followed                                                        | Abort                             | Abort calibration                                                                        |      |        |
|                                                                          | will automatically calibrate to                                                              | Busy                              | Controller automatically calibrating                                                     |      |        |
|                                                                          | this position.                                                                               | Passed                            | Calibration OK                                                                           |      |        |
|                                                                          | Repeat for the minimum                                                                       | Failed                            | Calibration bad                                                                          |      |        |
|                                                                          | position and selecting " <b>H</b> r.                                                         | Accept                            | To start using the new values                                                            |      |        |
|                                                                          | of the valve positioning<br>motor it may be difficult to                                     | Save User                         | To store the new values to EE memory<br>(For User calibration)                           |      |        |
| adjust the pot position. In<br>this case refer back to<br>section 7.2.2. | adjust the pot position. In<br>this case refer back to<br>section 7.2.2.                     | Save Fact                         | To store the new values to EE memory<br>(For Factory calibration: password<br>protected) |      |        |
|                                                                          |                                                                                              | Load Fact                         | Load factory calibration (Save User required for permanent use of Factory calibration).  |      |        |
| Status                                                                   | Working condition of the                                                                     | ОК                                | Potentiometer input broken                                                               |      | R/O    |
|                                                                          | module                                                                                       | Sbreak                            |                                                                                          |      |        |

# 9.3.9 Transmitter Power Supply

This module may be used to provide 24Vdc to power an external transmitter.

| List Header - M | od                    | Sub-headers: xA, xB, xC                                  |                         |         |        |
|-----------------|-----------------------|----------------------------------------------------------|-------------------------|---------|--------|
|                 |                       | x = the number of the slot in which the module is fitted |                         |         |        |
| Name            | Parameter Description | Value                                                    |                         | Default | Access |
| (B) to select   |                       | ▲ or ▼ to change                                         |                         |         | Level  |
| Ident           | Channel type          | TxPSU                                                    | Transducer power supply |         | L3 R/O |
| Status          | Module status         | ОК                                                       | Normal operation        |         | R/O    |
|                 |                       |                                                          | See note 2              |         |        |

Aug-04

# 9.3.10 Transducer Power Supply

The transducer power supply may be used to power an external transducer which requires an excitation voltage of 5 or 10V. It contains an internal shunt resistor for use when calibrating the transducer. The value of this resistor is  $30.1 \text{K}\Omega \pm 0.25\%$  when calibrating a  $350\Omega$  bridge.

| List Header - PV Input |                                                                                                                   | Sub-headers: xA |                                                                     |          |        |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------|----------|--------|--|--|
|                        |                                                                                                                   | x = the number  | $\mathbf{x}$ = the number of the slot in which the module is fitted |          |        |  |  |
| Name                   | Parameter                                                                                                         | Value           |                                                                     | Default  | Access |  |  |
| to select              | Description                                                                                                       | ( or ( to       | change                                                              |          | Level  |  |  |
| ldent                  | Channel type                                                                                                      | TransPSU        | Transducer power supply                                             |          | R/O    |  |  |
| Meas Value             | The current output value                                                                                          |                 |                                                                     |          | R/O    |  |  |
| PV                     | Requested<br>output/current input<br>signal level (after<br>linearisation where<br>applicable).<br>Normally wired |                 |                                                                     |          |        |  |  |
| Status                 | The current status for the channel.                                                                               | ОК              | Normal operation<br>see note 2                                      |          | R/O    |  |  |
| Shunt                  |                                                                                                                   | External        | Select external calibration resistor                                | External | Conf   |  |  |
|                        |                                                                                                                   | Internal        | Select internal calibration resistor 30.1K $\Omega$                 |          |        |  |  |
| Voltage                | To select the output                                                                                              | 10 Volts        | 10 Volts                                                            |          | Conf   |  |  |
|                        | voltage                                                                                                           | 5 Volts         | 5 Volts                                                             |          |        |  |  |

Part No HA027988 Issue 3.0 Aug-04



# 9.4 MODULE SCALING

The controller is calibrated for life against known reference standards during manufacture, but user scaling allows you to offset the 'permanent' factory calibration to either:-

- 1. Scale the controller to your reference standards
- 2. Match the calibration of the controller to an individual transducer or sensor
- 3. To compensate for known offsets in process measurements

#### 9.4.1 Analogue Input Scaling and Offset

Scaling of the analogue input uses the same procedure as described for the PV Input (Chapter 6) and applies to linear process inputs only, eg linearised transducers, where it is necessary to match the displayed reading to the electrical input levels from the transducer. PV input scaling is not provided for direct thermocouple or RTD inputs.

Figure 9-2 shows an example of input scaling. where an electrical input of 4-20mA requires the display to read 2.5 to 200.0 units.

Offset has the effect of moving the whole curve, shown in Figure 9-2, up or down about a central point. The 'Offset' parameter is found in the 'Mod' page under the number of the slot position in which the Analogue Input module is fitted.



Figure 9-2: Input Scaling (Standard IO)

To scale a mA analogue input as shown in the above example:-

(This also applies to V or mV input types).

- 12. Select Conf as described in Chapter 2. Then press () to select the page header in which the analogue input module is fitted
- 13. Press 🕑 to scroll to 'Disp Hi'. Then press 🌢 or 🔍 to '200.0'
- 14. Press  $\bigcirc$  to scroll to **'Disp Lo'**. Then press  $\bigcirc$  or  $\bigcirc$  to **'2.5'**
- 15. Press O to scroll to **'Range Hi'**. Then press O or T to **'20.0'**
- 16. Press  $\bigcirc$  to scroll to **'Range Lo'**. Then Press  $\bigcirc$  or  $\bigcirc$  to **'4.00'**
- 17. Press 🕑 to scroll to **'Offset'**. Then Press 🌢 or 文 to adjust the offset in a positive or negative direction as required



Aug-04

### 9.4.2 Relay, Logic or Triac Output Scaling

If the output is configured for time proportioning control, it can be scaled such that a lower and upper level of PID demand signal can limit the operation of the output value.

By default, the output will be fully off for 0% power demand, fully on for 100% power demand and equal on/off times at 50% power demand. You can change these limits to suit the process. It is important to note, however, that these limits are set to safe values for the process. For example, for a heating process it may be required to maintain a minimum level of temperature. This can be achieved by applying an offset at 0% power demand which will maintain the output on for a period of time. Care must be taken to ensure that this minimum on period does not cause the process to overheat.

If Range Hi is set to a value <100% the time proportioning output will switch at a rate depending on the value - it will not switch fully on.



Similarly, if Range Lo is set to a value >0% it will not switch fully off.



The procedure for adjusting these parameters is the same as that given in the previous section.

# 9.4.3 Analogue Output Scaling

Analogue control or retransmission outputs are scaled in exactly the same way as above except that Range Lo and Hi corresponds to the electrical output (0 to 10V, 4 to 20mA, etc). For an analogue retransmission output Disp Lo and Hi correspond to the reading on the display and for an analogue control output Disp Lo and Hi corresponds to the PID demand output signal from the control block.



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

#### 9.4.4 Potentiometer Input Scaling

When using the controller in bounded valve position mode, it is necessary to calibrate the feedback potentiometer to correctly read the position of the valve. The minimum position of the potentiometer corresponds to a measured value reading of 0 and the maximum position corresponds to 100. This may be carried out in Access level 3:-

- 1. Adjust the potentiometer for the minimum required position. This may not necessarily be on the end stop.
- 2. Press () to scroll to **'Cal State'**. Then press () or () to **'Lo'** and **''Confirm'**. The display will show **'Go'** followed by **'Busy'** while the controller automatically calibrates to the minimum position. When complete **'Passed'** should be displayed. If **'Failed'** is displayed this may indicate that the potentiometer is outside the range of the input.
- 3. Adjust the potentiometer for the maximum required position. This may not necessarily be on the end stop.
- 4. Repeat 2 above for the 'Hi' position
- 5. The controller will now use these values until it is powered down. If it required to store these values, which is the usual case, press (a) or (b) to 'Accept'. The controller will store these values for future use.

Aug-04



Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

# **10.** CHAPTER **10** IO EXPANDER

The IO Expander is an external unit which can be used in conjunction with the 3500 series controllers to allow the number of digital IO points to be increased. There are two versions:-

10 Inputs and 10 Outputs

20 Inputs and 20 Outputs

Each input is fully isolated and voltage or current driven. Each output is also fully isolated consisting of four changeover contacts and six normally open contacts in the 10 IO version and four changeover and sixteen normally open contacts in the 20 IO version.

Data transfer is performed serially via an IO Expander module which is fitted in the J serial communications slot. This module is identified as 'IOExp' in the 'Comms' 'J' parameter list (see Chapter 13). It should be noted that, when this module is fitted in the J comms slot the remaining parameters in the 'Comms' 'J' list are not used.



It is recommended that a cable length of 10 metres is not exceeded, however, no shielding or twisted pair cable is required.

#### Figure 10-1: IO Expander Data Transfer

Wiring connections and further details of the IO Expander are given in the IO Expander Handbook, Part No. HA026893.

When this unit is connected to the controller it is necessary to set up parameters to determine its operation. These parameters can be set up in Level 3 or configuration level.

The IO Expander is enabled in Inst/Options Page, see Chapter 5.



98.

# **10.1** To Configure the IO Expander

| Do This                                                                                        | The Display You Should See | Additional Notes                                                                                 |  |  |  |  |
|------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|
| 25. From any display press ()<br>until the <b>'IOExp'</b> page is<br>reached                   | ICExp<br>OType #None       |                                                                                                  |  |  |  |  |
| Press 🕑 to scroll to ' <b>Type'</b><br>26. Press 🌢 or 💽 to select<br><b>'10In10Out'</b>        | IOExp<br>979pe             | This configured an Io Expander for 10<br>inputs and 10 outputs.<br>A further choice is 20In20Out |  |  |  |  |
| Remaining parameters in the Analogue Operators list are accessed and adjusted in the same way. |                            |                                                                                                  |  |  |  |  |

 $\downarrow$ 

The list of parameters available is shown in the following table

# **10.1.1** IO Expander Parameters

| List Header: IOExp | Sub-headers: None                                                                                                                                                                      |                                  |                                                                                           |              |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------|--------------|
| Parameter Name     | Parameter Description                                                                                                                                                                  | Value                            | Default                                                                                   | Access Level |
| Expander Type      | Expander type                                                                                                                                                                          | None<br>10In 10Out<br>20In 20Out | None<br>10 inputs 10 outputs<br>20 inputs 20 outputs                                      | Conf         |
| Status             | IO Expander status                                                                                                                                                                     | Good<br>COMM FAIL                | OK<br>No communications                                                                   | L3 R/O       |
| In 1-10            | Status of the first 10 digital inputs                                                                                                                                                  | = Off<br>■ = On                  |                                                                                           | L3 R/O       |
| In 11-20           | Status of the second 10 digital inputs                                                                                                                                                 | = Off<br>■ = On                  |                                                                                           | L3 R/O       |
| Out21-30           | Status of the first 10 digital outputs.<br>Press ← to select outputs in turn. The<br>flashing underlined output can be<br>changed using ◆ buttons.<br>◆ to<br>◆ to                     | = Off<br>■ = On                  |                                                                                           | L3           |
| Out31-40           | Status of the second 10 digital outputs.<br>Press ← to select outputs in turn. The<br>flashing underlined output can be<br>changed using ◆ buttons.<br>◆ □□□□□□□□□□□ to<br>◆ ■■■■■■■■■ | = Off<br>■ = On                  |                                                                                           | L3           |
| Inv21-30           | To change the sense of the first 10 outputs.                                                                                                                                           | = direct<br>■ = Inverted         |                                                                                           | L3           |
| Inv31-40           | To change the sense of the second 10 outputs.                                                                                                                                          | = direct<br>■ = Inverted         |                                                                                           | L3           |
| In1 to In 20       | State of each configured input                                                                                                                                                         | 0 or 1                           | These are normally wired to<br>a digital source. If not wired<br>they can be changed here | L3           |
| Out21 to Out 40    | State of each configured output                                                                                                                                                        | 0 or 1                           | Off or On                                                                                 | L3           |

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

# 11. CHAPTER 11 ALARMS

**Alarms** are used to alert an operator when a pre-set level has been exceeded. They are indicated by a message in the message centre and the red ALM beacon as described in section 1.15. They may also switch an output– usually a relay (see section 11.3.2) – to allow external devices to be operated when an alarm occurs.

Alarms can be divided into two main types. These are:-

**Analogue alarms** - operate by monitoring an analogue variable such as the process variable and comparing it with a set threshold.

Digital alarms – operate when the state of a boolean variable changes, for example, sensor break.

**Number of Alarms -** up to eight analogue and eight digital alarms may be configured. Any alarm can be enabled in the 'Inst' 'Opt' list as described in Chapter 5.

# **11.1 Further Alarm Definitions**

| Soft<br>Alarms     | are indication only and do not operate an output.                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Events             | are indication only but can operate an output. They can also be configured, using the editing tool (iTools), to provide text messages on the display. For the purpose of the configuration of this controller, alarms and events can be considered the same.                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                  |  |
| Hysteresis         | is the dif<br>it switche<br>prevent a                                                                                                                                                                                                                                                                                                                                                 | is the difference between the point at which the alarm switches 'ON' and the point at which<br>it switches 'OFF'. It is used to provide a definite indication of the alarm condition and to<br>prevent alarm relay chatter. |                                                                                                                                                                                                                                  |  |
| Latching<br>Alarm  | used to hold the alarm condition once an alarm has been detected. It may be configured as:-                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                  |  |
|                    | None                                                                                                                                                                                                                                                                                                                                                                                  | Non<br>latching                                                                                                                                                                                                             | A non latching alarm will reset itself when the alarm condition is removed                                                                                                                                                       |  |
|                    | Auto                                                                                                                                                                                                                                                                                                                                                                                  | Automatic                                                                                                                                                                                                                   | An auto latching alarm requires acknowledgement before it is reset. The acknowledgement can occur BEFORE the condition causing the alarm is removed.                                                                             |  |
|                    | Manual                                                                                                                                                                                                                                                                                                                                                                                | Manual                                                                                                                                                                                                                      | The alarm continues to be active until both the alarm condition is removed AND the alarm is acknowledged. The acknowledgement can only occur AFTER the condition causing the alarm is removed.                                   |  |
|                    | Event                                                                                                                                                                                                                                                                                                                                                                                 | Event                                                                                                                                                                                                                       | ALM beacon does not light but an output associated with this parameter will activate and a scrolling message will appear if this has been configured.                                                                            |  |
| Blocking<br>Alarms | The alarr<br>until the<br>conditior<br>initiated                                                                                                                                                                                                                                                                                                                                      | n may be mask<br>process has fir<br>ns which are no<br>after a setpoin                                                                                                                                                      | ked during start up. Blocking prevents the alarm from being activated<br>rst achieved a safe state. It is used, for example, to ignore start up<br>ot representative of running conditions. A blocking alarm is re-<br>t change. |  |
| Delay              | Applies to analogue alarms. A short time can be set for each alarm which prevents the output from going into the alarm state. The alarm is still detected as soon as it occurs, but if it cancels before the end of the delay period then no output is triggered. The timer for the delay is then reset. It is also reset if an alarm is changed from being inhibited to uninhibited. |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                  |  |

100.

Aug-04

### 11.2 Analogue Alarms

Analogue alarms operate on variables such as PV, output levels, etc. They can be soft wired to these variables to suit the process.

### 11.2.1 Analogue Alarm Types

Absolute High - an alarm occurs when the PV exceeds a set high threshold.

Absolute Low - an alarm occurs when the PV exceeds a set low threshold.

Deviation High - an alarm occurs when the PV is higher than the setpoint by a set threshold

Deviation Low - an alarm occurs when the PV is lower than the setpoint by a set threshold

Deviation Band - an alarm occurs when the PV is higher or lower than the setpoint by a set threshold

These are shown graphically below for changes in PV plotted against time. (Hysteresis set to zero)



Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

# 11.3 Digital Alarms

Digital alarms operate on Boolean variables. They can be soft wired to any suitable Boolean parameter such as digital inputs or outputs. When the state of the variable changes an alarm message is shown on the display. This message can be customised as described in Chapter 26.

# 11.3.1 Digital Alarm Types

| Pos Edge | The alarm will trigger when the input changes from a low to high condition |
|----------|----------------------------------------------------------------------------|
| Neg Edge | The alarm will trigger when the input changes from a high to low condition |
| Edge     | The alarm will trigger on any change of state of the input signal          |
| High     | The alarm will trigger when the input signal is high                       |
| Low      | The alarm will trigger when the input signal is low                        |

# 11.3.2 Alarm Relay Output

As explained in Chapter 8, alarms can operate a specific output (usually a relay). Any individual alarm can operate an individual output or any combination of alarms, up to four, can operate an individual output. They are either supplied pre-configured in accordance with the ordering code or set up in configuration level.



102.

#### 11.3.3 How Alarms are Indicated

- ALM beacon flashing red = a new alarm (unacknowledged)
- This is accompanied by a scrolling alarm message. A typical default message will show the source of the alarm followed by the type of alarm. For example, 'AnAlm 1' is the default message for analogue alarm 1.
- Using Eurotherm iTools configuration package, it is also possible to download customised alarm messages. An example might be, 'Process Too Hot' for an analogue alarm or 'Vent open' for a digital alarm.
- If more than one alarm is present they are listed in the AlmSmry' (Alarm Summary) page.

ALM beacon on continuously = alarm has been acknowledged

Further details of alarm indication are shown in section 1.15.

# 11.3.4 To Acknowledge an Alarm

Press and ( (Ack) together.

The action, which now takes place, will depend on the type of latching, which has been configured

#### Non Latched Alarms

If the alarm condition is present when the alarm is acknowledged, the alarm beacon will be continuously lit. This state will continue for as long as the alarm condition remains. When the alarm condition disappears the indication will also disappear.



If a relay has been attached to the alarm output, it will de-energise when the alarm condition occurs and remain in this condition until the alarm is acknowledged **AND** it is no longer present.

If the alarm condition disappears before it is acknowledged the alarm indication disappears as soon as the condition disappears.

#### Automatic Latched Alarms

The alarm continues to be active until both the alarm condition is removed AND the alarm is acknowledged. The acknowledgement can occur **BEFORE** the condition causing the alarm is removed.

#### Manual Latched Alarms

The alarm continues to be active until both the alarm condition is removed AND the alarm is acknowledged. The acknowledgement <u>can only occur</u> **AFTER** the condition causing the alarm is removed.



# **11.4 Alarm Parameters**

Eight alarms are available. Parameters do not appear if the Alarm Type = None. The following table shows the parameters to set up and configure alarms.

| List Header: |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                    |                                 |                                                     |                  |        |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------|------------------|--------|
| Name         | Parameter Description                                                                                                                                           |                                                                                                                                                                                                                                                                                    | Value                           |                                                     | Default          | Access |
| to select    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                    | ▲ or ▼ to change                |                                                     |                  | Level  |
| Туре         | Selects the type                                                                                                                                                | of alarm                                                                                                                                                                                                                                                                           | None                            | Alarm not configured                                | As order         | Conf   |
|              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                    | Abs Hi                          | Full Scale High                                     | code             | L3 R/O |
|              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                    | Abs Lo                          | Full Scale Low                                      |                  |        |
|              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                    | Dev Hi                          | Deviation High                                      |                  |        |
|              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                    | Dev Lo                          | Deviation Low                                       |                  |        |
|              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                    | Dv Bnd                          | Deviation band                                      |                  |        |
| Input        | This is the paran<br>compared again<br>alarm condition                                                                                                          | neter that will be monitored and<br>st the threshold value to see if an<br>has occurred                                                                                                                                                                                            | Instrument range                |                                                     |                  | L3     |
| Reference    | The reference value is used in deviation alarms<br>and the threshold is measured from this<br>reference and not from its absolute value.                        |                                                                                                                                                                                                                                                                                    | Instrumen                       | t range                                             |                  | L3     |
| Threshold    | The threshold is the value that the input is compared against to determine if an alarm has occurred.                                                            |                                                                                                                                                                                                                                                                                    | Instrument range                |                                                     |                  | L3     |
| Output       | The output indic<br>off depending o<br>and acknowledg                                                                                                           | cates whether the alarm is on or<br>n the alarm condition, latching<br>e, inhibiting and blocking.                                                                                                                                                                                 | Off<br>On                       | Alarm output<br>deactivated                         |                  | L3 R/O |
| Inhibit      | Inhibit is an inpu<br>the alarm to be<br>Inhibit is connec<br>that during a ph<br>activate. For Ex<br>opened the alar<br>door is closed a                       | ut to the Alarm function. It allows<br>switched OFF. Typically the<br>ted to a digital input or event so<br>ase of the process alarms do not<br>ample, if the door to a furnace is<br>ms may be inhibited until the<br>gain.                                                       | No<br>Yes                       | Alarm not inhibited<br>Inhibit function active      | As order<br>code | L3     |
| Hyst         | Hysteresis is use<br>causing the Alar<br>outputs become<br>the Alarm Setpo<br>the PV has retur<br>than the hysteris<br>hysterisis is set t<br>oscillations seen | d to prevent signal noise from<br>m output to oscillate. Alarm<br>e active as soon as the PV exceeds<br>int. They return to inactive after<br>rned to the safe region by more<br>sis value. Typically the Alarm<br>o a value that is greater than the<br>on the instrument display | Instrument range                |                                                     |                  | L3     |
| Latch        | Determine the t<br>if any. Auto latcl<br>while the alarm<br>manual latching<br>back to safe bef<br>acknowledged.<br>See also the des<br>chapter                 | ype of latching the alarm will use,<br>hing allows acknowledgement<br>condition is still active, whereas<br>needs the condition to revert<br>ore the alarm can be<br>cription at the beginning of this                                                                             | None<br>Auto<br>Manual<br>Event | No latching is used<br>Automatic<br>Manual<br>Event |                  | L3     |
| Ack          | Used in conjunction with the latching parameter.<br>It is set when the user responds to an alarm.                                                               |                                                                                                                                                                                                                                                                                    | No<br>Yes                       | Not acknowledged<br>Acknowledged                    |                  | L3     |

PRÉCONISATEUR DE SOLUTIONS DEPUIS 1988

104.

Aug-04

| Block    | Alarm Blocking is used to prevent alarms from<br>activating during start-up. In some applications,<br>the measurement at start-up is in an alarm<br>condition until the system has come under<br>control. Blocking causes the alarms to be<br>ignored until the system is under control (in the<br>safe state), after this any deviations trigger the<br>alarm | No<br>Yes     | No blocking<br>Blocking                                                                    |        | L3 |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------|--------|----|
| Priority | There are three levels of priority, <i>low</i> , <i>medium</i><br>and <i>high</i> . When an alarm is triggered a popup is<br>shown on the instrument display. Higher level<br>alarms override lower level ones.                                                                                                                                                | Med           | A medium priority<br>alarm will cause a pop-<br>up and supersedes a<br>low priority alarm. | Med    | L3 |
|          |                                                                                                                                                                                                                                                                                                                                                                | High          | A high priority alarm supersedes both low and medium alarms.                               |        |    |
|          |                                                                                                                                                                                                                                                                                                                                                                | Low           | A low priority alarm will cause a pop-up.                                                  |        |    |
| Delay    | This is a small delay between sensing the alarm                                                                                                                                                                                                                                                                                                                | 0:00.0 to 500 |                                                                                            | 0:00.0 | L3 |
|          | condition and displaying it. If in the time<br>between the two, the alarm goes safe, then no<br>alarm is shown and the delay timer is reset. It                                                                                                                                                                                                                | mm:ss.s       |                                                                                            |        |    |
|          |                                                                                                                                                                                                                                                                                                                                                                | hh:mm:ss      |                                                                                            |        |    |
|          | can be used on systems that are prone to noise.                                                                                                                                                                                                                                                                                                                | hhh:mm        |                                                                                            |        |    |

#### Example: To Configure Alarm 1 11.4.1

Enter configuration level as described. Then:-

|          | Do This                                                                                 | The Display You                                | Should See                              | Additional Notes                                                                                                                                                                                                                                                                                            |  |  |
|----------|-----------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1.       | Press <sup>(IIII</sup> ) as many times as necessary to select <b>'AnAlm'</b>            | <b>AnAl</b> m<br>Type<br>Input<br>Threshold    | +                                       | Up to 8 alarms can be selected using<br>or<br>provided they have been enabled<br>in the ' <b>Inst' 'Opt'</b> page                                                                                                                                                                                           |  |  |
| 1.<br>2. | Press () to select <b>'Type'</b><br>Press () or () to select the<br>required alarm type | <b>AriAl</b> ín<br>UType<br>Input<br>Threshold |                                         | Alarm Type choices are:-         None       Alarm not configured         Abs Hi       Full Scale High         Abs Lo       Full Scale Low         Dev Hi       Deviation High         Dev Lo       Deviation Low         Dv Rnd       Deviation Rand                                                        |  |  |
| 3.<br>4. | Press 🕝 to select <b>'Threshold'</b><br>Press 🌰 or 💽 to set the<br>alarm trip level     | <b>AnAlm</b><br>Type<br>Input<br>UThreshold    | <u>1</u><br>Abs Hi<br>50.00<br>\$100.00 | This is the alarm threshold setting for.<br>In this example the high alarm will be<br>detected when the measured value exceeds<br>100.00.<br>The current measured value is 50.00 as<br>measured by the 'Input' parameter. This<br>parameter will normally be wired to an<br>internal source such as the PV. |  |  |

Aug-04 Part No HA027988 Issue 3.0



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

| 5. | Press () to select <b>'Hyst'</b><br>Press () or () to set the<br>hysteresis                                                       | <b>bènàim 1</b><br>Outeut<br>Inhibit<br>0H9st | Off<br>No<br>‡ 2 | In this example the alarm will cancel when<br>the measured value decreases 2 units<br>below the trip level (at 98 units) |
|----|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------|
| 7. | Continue to select parameters using $\textcircled{(c)}$ and setting their values using $\textcircled{(c)}$ or $\textcircled{(c)}$ |                                               |                  |                                                                                                                          |

# 11.5 Diagnostic Alarms

Diagnostic alarms indicate a possible fault within the controller or connected devices.

| Display shows | What it means                                                                                                                                                                                                                                                 | What to do about it                                                                                                                                                                                   |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E.Conf        | A change made to a parameter takes a finite time to<br>be entered. If the power to the controller is turned<br>off before the change has been entered then this<br>alarm will occur.<br>Do not turn the power off to the controller while<br>ConF is flashing | Enter configuration mode then return to the<br>required operating mode. It may be necessary to<br>re-enter the parameter change since it will not have<br>been entered in the previous configuration. |
| E.CaL         | Calibration error                                                                                                                                                                                                                                             | Re-instate Factory calibration                                                                                                                                                                        |
| E2.Er         | EEPROM error                                                                                                                                                                                                                                                  | Return to factory for repair                                                                                                                                                                          |
| EE.Er         | Non-vol memory error                                                                                                                                                                                                                                          | Note the error and contact your supplier                                                                                                                                                              |
| E.Lin         | Invalid input type. This refers to custom<br>linearisation which may not have been applied<br>correctly or may have been corrupted.                                                                                                                           | Go to the INPUT list in configuration level and set a valid thermocouple or input type                                                                                                                |

# 11.6 To Set Up Alarms Using iTools

iTools may be used to configure alarms and enter alarm messages. See Chapter 26 for a details.

Aug-04



Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com
# 12. BCD INPUT

The Binary Coded Decimal (BCD) input function block uses a number of digital inputs and combines them to make a numeric value. A very common use for this feature is to select a setpoint program number from panel mounted BCD decade switches.

The block uses 4 bits to generate a single digit.

Two groups of four bits are used to generate a two digit value (0 to 99)

The block outputs four results

- 1. Units Value: The BCD value taken from the first four bits (range 0 9)
- 2. Tens Value: The BCD value taken from the second four bits (range 0 9)
- 3. BCD Value: The combined BCD value taken from all 8 bits (range 0 99)
- 4. Decimal Value: The decimal numeric equivalent of Hexadecimal bits (range 0 255)

The following table shows how the input bits combine to make the output values.

| Input 1 |                      |                    |                         |
|---------|----------------------|--------------------|-------------------------|
| Input 2 | Lipite value (0, 0)  |                    |                         |
| Input 3 | Units value ( 0 – 9) |                    |                         |
| Input 4 |                      | BCD value (0 – 99) | Decimal value (0 – 255) |
| Input 5 |                      |                    |                         |
| Input 6 |                      |                    |                         |
| Input 7 | rens value ( 0 – 9)  |                    |                         |
| Input 8 |                      |                    |                         |

Since the inputs cannot all be guaranteed to change simultaneously, the output will only update after all the inputs have been stable for two samples.

# 12.1 BCD Parameters

| List Header - BCDIn |                                                                                  | Sub-headers: 1 and 2 |                             |         |                 |  |  |
|---------------------|----------------------------------------------------------------------------------|----------------------|-----------------------------|---------|-----------------|--|--|
| Name                | Parameter Description                                                            | Value<br>or 💌 to     | o change                    | Default | Access<br>Level |  |  |
| In 1                | Digital Input 1                                                                  | On or Off            | Alterable from the operator | Off     | L3              |  |  |
| In 2                | Digital Input 2                                                                  | On or Off            | interface if not wired      | Off     | L3              |  |  |
| In 3                | Digital Input 3                                                                  | On or Off            |                             | Off     | L3              |  |  |
| In 4                | Digital Input 4                                                                  | On or Off            |                             | Off     | L3              |  |  |
| In 5                | Digital Input 5                                                                  | On or Off            |                             | Off     | L3              |  |  |
| In 6                | Digital Input 6                                                                  | On or Off            |                             | Off     | L3              |  |  |
| In 7                | Digital Input 7                                                                  | On or Off            |                             | Off     | L3              |  |  |
| In 8                | Digital Input 8                                                                  | On or Off            |                             | Off     | L3              |  |  |
| Dec Value           | Decimal value of the inputs                                                      | 0 – 255              | See examples below          |         | L3 R/O          |  |  |
| BCD Value           | Reads the value (in BCD) of the<br>switch as it appears on the<br>digital inputs | 0 – 99               | See examples below          |         |                 |  |  |
| Units               | Units value of the first switch                                                  | 0 – 9                | See examples below          |         | L3 R/O          |  |  |
| Tens                | Units value of the second switch                                                 | 0 – 9                | See examples below          |         | L3 R/O          |  |  |

108.



| In 1 | In 2 | In 3 | In 4 | In 5 | In 6 | In 7 | In 8 | Dec | BCD | Units | Tens |
|------|------|------|------|------|------|------|------|-----|-----|-------|------|
| 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1   | 1   | 1     | 0    |
| 1    | 1    | 1    | 1    | 0    | 0    | 0    | 0    | 15  | 9   | 9     | 0    |
| 0    | 0    | 0    | 0    | 1    | 1    | 1    | 1    | 240 | 90  | 0     | 9    |
| 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 255 | 99  | 9     | 9    |

## 12.1.1 Example: To wire a BCD Input

The BCD digital input parameters may be wired to digital input terminals of the controller. There are two standard digital input terminals which may be used (LA and LB), but it may also be necessary to use a triple digital input module in addition. The wiring procedure is the same and the example given below wires BCD input 1 to LA.

| Do This                                                                                          | The Display You Should See                 | Additional Notes                                                                                                  |  |  |
|--------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|
| 27. From any display press (5)<br>until the <b>'BCDIn'</b> page is<br>reached                    | BCDIn \$1<br>In1 Off<br>In2 Off<br>In3 Off | In this example BCD block 1 is used.                                                                              |  |  |
| 28. Press or T to select '1'<br>or '2' as required                                               |                                            |                                                                                                                   |  |  |
| 29. Press 🕐 to scroll to <b>'In1'</b>                                                            | BCDIn 1<br>GIn1 #Off<br>In2 Off<br>In3 Off |                                                                                                                   |  |  |
| 30. Press to display<br>'WireFrom'                                                               | WireFrom<br>B                              |                                                                                                                   |  |  |
| 31. Using (and C) select the parameter which is to be wired from. In this example Logic input LA | WireFrom<br>LacIO \$LA<br>GPV              | PV is the parameter required and this<br>procedure 'copies' the parameter to be<br>wired from                     |  |  |
| 32. Press                                                                                        | L∋CIOLA<br>PU<br>⊪→Cancel G→OK             |                                                                                                                   |  |  |
| 33. Press 🕑 to confirm                                                                           | BCDIn 1<br>PIn1 On<br>In2 Off<br>In3 Off   | This 'pastes' the parameter to 'In1'<br>Note the arrow next to the parameter<br>which indicates it has been wired |  |  |

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

### 13. DIGITAL COMMUNICATIONS

Digital Communications (or 'comms' for short) allows the controller to communicate with a PC or a networked computer system or any type of communications master using the protocols supplied. Communications can be used for many purposes – data logging for archiving and plant diagnostic purposes; cloning for saving instrument set ups for future expansion of the plant or to allow you to recover a set-up after a fault.

This product supports the following protocols:-

- MODBUS RTU ® a full description of which can be found on www.modbus.org. See also 2000 series Communications Handbook, part number HA026230.
- El-Bisynch. See also 2000 series Communications Handbook, part number HA026230.
- DeviceNet. See also DeviceNet Communications Handbook Part No. HA027506
- Profibus. See also Profibus Communications Handbook Part No. HA026290
- Ethernet.

The above handbooks may be downloaded from www.eurotherm.co.uk.

There are two communications ports available within the instrument; these are defined as the 'H' and 'J' ports and act as a communications slave. Various communications modules may be fitted to each port.

| Port | ModBus | El-Bisynch | DeviceNet | Profibus | Ethernet |
|------|--------|------------|-----------|----------|----------|
| Н    | ~      | ~          | ~         | ~        | ~        |
| J    | ~      | ~          | Х         | х        | х        |

The following table shows the protocols supported by each port within the instrument:-

Wiring connections for each of these protocols is given in Chapter1.

Note:- When using DeviceNet with instrument firmware version 1.10 and greater, the DeviceNet module must have the part no. AH027179U003

# 13.1 Serial Communications

ModBus and EI-Bisynch use RS232 and RS485 2-wire serial communications. The wiring connections for these and the other protocols are given in Chapter 1.

### 13.1.1 **RS232**

RS232 uses a three wire cable (Tx, Rx, Gnd). The signals are single ended, i.e. there is a single wire for transmit and another for receive. This makes RS232 less immune to noise in industrial applications. RS232 can only be used with one instrument. To use RS232 the PC will be equipped with an RS232 port, usually referred to as COM 1.

To construct a cable for RS232 operation use a three core screened cable.

The terminals used for RS232 digital communications are listed in the table below. Some PC's use a 25 way connector although the 9 way is more common.

| Standard Cable | PC socket p | oin no. | PC Function *          | Instrument Terminal | Instrument    |
|----------------|-------------|---------|------------------------|---------------------|---------------|
| Colour         | 9 way       | 25 way  |                        |                     | Function      |
| White          | 2           | 3       | Receive (RX)           | HF or JF            | Transmit (TX) |
| Black          | 3           | 2       | Transmit (TX)          | HE or JE            | Receive (RX)  |
| Red            | 5           | 7       | Common                 | HD or JD            | Common        |
| Link together  | 1           | 6       | Rec'd line sig. detect |                     |               |
|                | 4           | 8       | Data terminal ready    |                     |               |
|                | 6           | 11      | Data set ready         |                     |               |
| Link together  | 7           | 4       | Request to send        |                     |               |
|                | 8           | 5       | Clear to send          |                     |               |
| Screen         |             | 1       | Ground                 |                     |               |

\* These are the functions normally assigned to socket pins. Please check your PC manual to confirm.

110.



### 13.1.2 RS485

The RS485 standard allows one or more instruments to be connected (multi dropped) using a two wire connection, with cable length of less than 1200M. 31 instruments and one master may be connected. The balanced differential signal transmission is less prone to interference and should be used in preference to RS232 in noisy environments. RS485 may be used with Half Duplex Communications such as MODBUS RTU.

To use RS485, buffer the RS232 port of the PC with a suitable RS232/RS485 converter. The Eurotherm KD485 Communications Adapter unit is recommended for this purpose. The use of a RS485 board built into the computer is not recommended since this board may not be isolated, which may cause noise problems or damage to the computer, and the RX terminals may not be biased correctly for this application.

To construct a cable for RS485 operation use a screened cable with one (RS485) twisted pair plus a separate core for common. Although common or screen connections are not necessary, their use will significantly improve noise immunity.

| Standard Cable Colour | PC Function *  | Instrument Terminal  | Instrument Function |
|-----------------------|----------------|----------------------|---------------------|
| White                 | Receive (RX+)  | HF or JF (B) or (B+) | Transmit (TX)       |
| Red                   | Transmit (TX+) | HE or JE (A) or (A+) | Receive (RX)        |
| Green                 | Common         | HD or JD             | Common              |
| Screen                | Ground         |                      |                     |

The terminals used for RS485 digital communications are listed in the table below.

\* These are the functions normally assigned to socket pins. Please check your PC manual to confirm .



# 13.2 Configuration Ports

In addition to the above communications the 'H' port also supports infrared (IR Clip) and configuration (CFG Clip) communications see also Chapter 26. These interfaces always adhere to default settings regardless of the 'H' port set up. These are:-

- ModBus protocol
- Instrument address 255
- Baud rate 19K2
- No parity

### 13.2.1 **IR Clip**

An IR Clip is available from Eurotherm which clips to the front of the controller as shown. It is enabled/disabled via the "IR Mode" parameter within the "Access" page of the instrument. When enabled the IR communications override all standard 'H' port communications. None of the standard communications detailed above will be responded to while IR Mode is enabled. 'H' port activities will not interfere with IR Clip communications.

Fitting of the CFG clip is the only communications mechanism

### 13.2.2 **CFG Clip**

A configuration clip is also available from Eurotherm which interfaces directly with the main printed circuit board in the controller. It can be clipped into position with the controller in or out of its sleeve. The CFG Clip is automatically detected when connected but should not be used while 'H' port communications are active. Note: The CFG clip must be powered externally to ensure

that overrides IR clip communications.



detection and may be used to power the instrument or while the instrument is already powered.

The DeviceNet communications module should not be fitted while using the CFG Clip as communications conflicts will occur. The minimum revision for DeviceNet communications module software used with the 3500 instruments is revision 1.6. This is identified by the module part no. AH027179U003.

The Ethernet communications module should also not be fitted while using the CFG Clip. This is because both the DeviceNet and Ethernet Communications Modules maintain constant messaging between themselves and the instrument even when no external messages are being received.

The CFG clip may be used while RS232/RS485/ProfiBus communications modules are fitted but it is not recommended that communications are active on these modules while the CFG clip is in use as conflict may occur.

Fitting of the CFG clip while the IR clip is in use will result in the IR communications being overridden and the CFG clip communications accepted.

Full instrument cloning is supported via the CFG clip without the need for instrument power although errors may be reported with I/O module settings. This is due to the modules not being powered during the operation so confirmation of downloaded settings will not be possible. Configuration of IO module settings via the CFG Clip when the instrument is not powered is not possible as the modules are not powered and therefore not detected.



# 13.3 Broadcast Master Communications

Broadcast master communications will to allow the 3500 series controllers to send a single value to any slave instruments using a Modbus broadcast using function code 6 (Write single value). This allows the 3500 to link through digital communications with other products without the need for a supervisory PC to create a small system solution.

Example applications include multi-zone profiling applications or cascade control using a second controller. The facility provides a simple and precise alternative to analogue retransmission.

# Warning

When using broadcast master communications, bear in mind that updated values are sent many times a second. Before using this facility, check that the instrument to which you wish to send values can accept continuous writes. Note that in common with many third party lower cost units, the Eurotherm 2200 series and the 3200 series prior to version V1.10 do not accept continuous writes to the temperature setpoint. Damage to the internal non-volatile memory could result from the use of this function. If in any doubt, contact the manufacturer of the device in question for advice.

When using the 3200 series fitted software version 1.10 and greater, use the Remote Setpoint variable at Modbus address 26 if you need to write to a temperature setpoint. This has no write restrictions and may also have a local trim value applied. There is no restriction on writing to the 2400 or 3500 series.

## 13.3.1 3500 Broadcast Master

The 3500 broadcast master can be connected to up to 31 slaves if no segment repeaters are used. If repeaters are used to provide additional segments, 32 slaves are permitted in each new segment. The master is configured by selecting a Modbus register address to which a value is to be sent. The value to send is selected by wiring it to the Broadcast Value. Once the function has been enabled, the instrument will send this value out over the communications link every control cycle (110ms).

Notes:-

- 1. The parameter being broadcast must be set to the same decimal point resolution in both master and slave instruments.
- 2. If iTools, or any other Modbus master, is connected to the port on which the broadcast master is enabled, then the broadcast is temporarily inhibited. It will restart approximately 30 seconds after iTools is removed. This is to allow reconfiguration of the instrument using itools even when broadcast master communications is operating.

A typical example might be a multi zone oven where the setpoint of each zone is required to follow, with digital accuracy, the setpoint of a master.



Figure 13-3: Broadcast Comms



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

## 13.3.2 Wiring Connections - Broadcast Communications

The Digital Communications module for the master can be fitted in either Comms Module slot H or J and uses terminals H(J)A to h(J)F.

The Digital Communications module for the slave is fitted in either slot J or slot H



## RS422, RS485 4-wire or RS232

Rx connections in the master are wired to Tx connections of the slave Tx connections in the master are wired to Rx connections of the slave



Figure 13-4: Rx/Tx Connections for RS422, RS485 4-wire, Rs232

## RS485 2-wire

i

Connect A (+) in the master to A (+) of the slave Connect B (-) in the master to B (-) of the slave This is shown diagrammatically below



Figure 13-5: Rx/Tx Connections RS484 2-wire

114.

Issue 3.0

Aug-04

Part No HA027988

# **13.4 Digital Communications Parameters**

| List Header - Co                 | omms                                                                                                                                                                             | Sub-headers: H and J                                     |                                                                                                                                                                                       |                                   |                                     |                 |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|-----------------|
| Name<br>to select                | Parameter Description                                                                                                                                                            | Value                                                    | to change                                                                                                                                                                             |                                   | Default                             | Access<br>Level |
| Ident                            | Identifies that the comms<br>module is fitted in the H or J slot                                                                                                                 | None<br>Comms                                            | No module fitted<br>Communications module fitted                                                                                                                                      |                                   | As ordered                          | R/O             |
| Protocol                         | Digital communications protocol                                                                                                                                                  | MODBUS<br>EIBISYNCH<br>Profibus<br>DeviceNet<br>Ethorpot |                                                                                                                                                                                       |                                   | MODBUS                              |                 |
| Baud Rate                        | Communications baud rate<br>Not applicable to Profibus or<br>Ethernet                                                                                                            | Modbus/El<br>4800<br>9600<br>19,200                      | l-Bisynch                                                                                                                                                                             | Devicenet<br>125K<br>250K<br>500K | 9600 El-Bi<br>19K2 Mod<br>125K Dnet | Conf<br>L3 R/O  |
| Parity                           | Communications parity<br>(not Devicenet or Profibus)                                                                                                                             | None<br>Even<br>Odd                                      | No parity<br>Even parity<br>Odd parity                                                                                                                                                |                                   | None                                | Conf<br>L3 R/O  |
| Address                          | Instrument address                                                                                                                                                               | 1 to 254 M<br>0 to 126 P<br>0 to 63 De                   | 254 Modbus/El-Bisynch<br>126 Profibus<br>63 Devicenet                                                                                                                                 |                                   |                                     | L3              |
| Resolution                       | Comms resolution<br>(Modbus only)                                                                                                                                                | Full<br>Integer                                          | Full<br>Integer                                                                                                                                                                       |                                   | Full                                | Conf            |
| Network                          | Network Status For Profibus<br>and DeviceNet only. Displays<br>status of the network and<br>connection                                                                           | Ready<br>Offline                                         | Network connected and working<br>Network not connected                                                                                                                                |                                   |                                     | R/O             |
| Comms<br>Delay                   | Rx/Tx delay time<br>(not Devicenet or Profibus)                                                                                                                                  | No<br>Yes                                                | No delay<br>Fixed delay. This inserts a delay<br>between Rx and Tx to ensure that<br>the drivers used by intelligent<br>RS232/RS485 converters have<br>sufficient time to switch over |                                   | No                                  | Conf<br>L3 R/O  |
| Rx Timeout                       | Timeout value<br>(not shown if Devicenet)                                                                                                                                        | None to                                                  |                                                                                                                                                                                       |                                   |                                     |                 |
| H Activity                       | Comms activity in H or J module                                                                                                                                                  | 0 or 1                                                   |                                                                                                                                                                                       |                                   |                                     |                 |
| Broadcast<br>See section<br>13.3 | To enable broadcast master<br>communications. This is only<br>applicable for Modbus protocol.                                                                                    | No<br>Yes                                                | Not enabled 0<br>Enabled 10mS                                                                                                                                                         | mS                                | No                                  |                 |
| Dest Addr<br>See section<br>13.3 | Address of the parameter being<br>written to slaves. For example,<br>to write to power output set the<br>value to 3, the Modbus address<br>of the parameter being written<br>to. | 0 to<br>32767                                            |                                                                                                                                                                                       |                                   |                                     |                 |
| Bcast Val<br>See section<br>13.3 | Value to be sent to instruments<br>on the network.<br>This would normally be wired to<br>a parameter within the 3500<br>master                                                   | Range of t<br>In the case<br>1.                          | he parameter wi<br>e of a Boolean th                                                                                                                                                  | red.<br>e value will be 0 or      |                                     |                 |

The following table shows the parameters available.





Aug-04

### 13.4.1 **Communications Identity**

The identity 'id' shows that a communications board is fitted or not.

#### 13.4.2 **Communication Address**

On a network of instruments an address is used to specify a particular instrument. Each instrument on a network should have a unique address. Address 255 (and address 244 when using Ethernet) is reserved for factory use.

### 13.4.3 **Baud Rate**

The baud rate of a communications network specifies the speed that data is transferred between instrument and master. A baud rate of 9600 equates to 9600 Bits per second. Since a single character requires 8 bits of data plus start, stop, and optional parity, up to 11 bits per byte may be transmitted. 9600 baud equates approximately to 1000 Bytes per second. 4800 baud is half the speed – approx. 500 Bytes per second.

In calculating the speed of communications in your system it is often the Latency between a message being sent and a reply being started that dominates the speed of the network.

For example, if a message consists of 10 characters (10msec at 9600 Baud) and the reply consists of 10 characters, then the transmission time would be 20 msec. However, if the Latency is 20msec, then the transmission time has become 40msec.

### 13.4.4 Parity

Parity is a method of ensuring that the data transferred between devices has not been corrupted.

Parity is the lowest form of integrity in the message. It ensures that a single byte contains either an even or an odd number of ones or zero in the data.

In industrial protocols, there are usually layers of checking to ensure that the first byte transmitted is good. Modbus applies a CRC (Cyclic Redundancy Check) to the data to ensure that the package is correct.

### 13.4.5 **RX/TX Delay Time**

In some systems it is necessary to introduce a delay between the instrument receiving a message and its reply. This is sometimes caused by communications converter boxes which require a period of silence on the transmission to switch over the direction of their drivers.

# 13.5 Example 1:- To Set Up Instrument Address

This can be done in operator level 3:-

|    | Do This                                                                    | The Display You S                        | Should See                  | Additional Notes                                                                                                            |
|----|----------------------------------------------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 1. | Press (a) as many times as necessary to select <b>'Comms'</b>              | Comms<br>Øldent<br>Protocol<br>Baud Rate | H<br>None<br>Moreus<br>9600 |                                                                                                                             |
| 2. | Press 🕝 to scroll to<br>'Address'                                          | Comms<br>Baud Rate<br>Parity             | H<br>9608<br>None           | Up to 254 can be chosen but note that no<br>more than 31 instruments should be<br>connected to a single RS485 link.         |
| 3. | Press ( ) or ( ) to select<br>the address for the particular<br>controller | Ut-ldchess                               | <b>#1</b>                   | For further information see 2000 Series<br>Communications Handbook Part No.<br>HA026230 available on<br>www.eurotherm.co.uk |



Aug-04

Part No HA027988 Issue 3.0

# 13.6 Example 2: To Send SP from the Master to PV in a Slave

- Wire the setpoint in the master to 'Bcast Val'. The procedure for this is shown in section 4.1.2. or 1. using iTools section 26.10.
- 2. Set 'Dest Addr' in the master to '2'. 2 is the modbus value for 'Target SP'. The value of the master setpoint will be shown in the lower display on the slave (assuming the slave has been configured for SP in the lower display).

# 13.7 Modbus Addresses

The Modbus addresses for all parameters is available from www.eurotherm.co.uk. The list below gives a selection from this list of the most popular addresses.

| Address | Address Hex | Parameter                  | Address | Address Hex | Parameter                       |
|---------|-------------|----------------------------|---------|-------------|---------------------------------|
| Decimal |             |                            | Decimal |             |                                 |
| 1       | 0x0001      | Loop.Main.PV               | 38      | 0x0026      | PV.Emissivity                   |
| 2       | 0x0002      | Loop.Main.TargetSP         | 39      | 0x0027      | Loop.Diag.Error                 |
| 3       | 0x0003      | Loop.OP.ManualOutVal       | 45      | 0x002d      | LgcIO.LA.MinOnTime              |
| 4       | 0x0004      | Loop.Main.ActiveOut        | 46      | 0x002e      | Loop.OP.PotCalibrate            |
| 5       | 0x0005      | Loop.Main.WorkingSP        | 47      | 0x002f      | Alarm.1.Hysteresis              |
| 6       | 0x0006      | Loop.PID.ProportionalBand  | 48      | 0x0030      | Loop.PID.ProportionalBand2      |
| 7       | 0x0007      | Loop.Setup.ControlAction   | 49      | 0x0031      | Loop.PID.IntegralTime2          |
| 8       | 0x0008      | Loop.PID.IntegralTime      | 50      | 0x0032      | Loop.PID.ManualReset2           |
| 9       | 0x0009      | Loop.PID.DerivativeTime    | 51      | 0x0033      | Loop.PID.DerivativeTime2        |
| 11      | 0x000b      | Loop.SP.RangeLow           | 52      | 0x0034      | Loop.PID.RelCh2Gain2            |
| 12      | 0x000c      | Loop.SP.RangeHigh          | 53      | 0x0035      | Loop.OP.Ch1PotPosition          |
| 13      | 0x000d      | Alarm.1.Threshold          | 54      | 0x0036      | LgcIO.LA.MinOnTime              |
| 14      | 0x000e      | Alarm.2.Threshold          | 55      | 0x0037      | Loop.Diag.IntegralOutContrib    |
| 15      | 0x000f      | Loop.SP.SPSelect           | 56      | 0x0038      | Programmer.Run.CurSeg           |
| 16      | 0x0010      | Loop.OP.Ch2Deadband        | 57      | 0x0039      | Programmer.Run.FastRun          |
| 17      | 0x0011      | Loop.PID.CutbackLow        | 58      | 0x003a      | Programmer.Run.ProgTimeLeft     |
| 18      | 0x0012      | Loop.PID.CutbackHigh       | 59      | 0x003b      | Programmer.Run.CyclesLeft       |
| 19      | 0x0013      | Loop.PID.RelCh2Gain        | 63      | 0x003f      | Programmer.Run.SegTimeLeft      |
| 21      | 0x0015      | Loop.OP.Ch1TravelTime      | 66      | 0x0042      | Loop.SP.SPTrimHighLimit         |
| 22      | 0x0016      | Programmer.Run.CurProg     | 67      | 0x0043      | Loop.SP.SPTrimLowLimit          |
| 23      | 0x0017      | Programmer.Run.ProgStatus  | 68      | 0x0044      | Alarm.2.Hysteresis              |
| 24      | 0x0018      | Loop.SP.SP1                | 69      | 0x0045      | Alarm.3.Hysteresis              |
| 25      | 0x0019      | Loop.SP.SP2                | 71      | 0x0047      | Alarm.4.Hysteresis              |
| 27      | 0x001b      | Loop.SP.SPTrim             | 72      | 0x0048      | Loop.PID.ActiveSet              |
| 28      | 0x001c      | Loop.PID.ManualReset       | 73      | 0x0049      | Instrument.Diagnostics.ErrCount |
| 29      | 0x001d      | Programmer.Run.CurSegType  | 78      | 0x004e      | Loop.SP.RateDisable             |
| 30      | 0x001e      | Loop.OP.OutputHighLimit    | 81      | 0x0051      | Alarm.3.Threshold               |
| 31      | 0x001f      | Loop.OP.OutputLowLimit     | 82      | 0x0052      | Alarm.4.Threshold               |
| 34      | 0x0022      | Loop.OP.SafeOutVal         |         |             |                                 |
| 35      | 0x0023      | Loop.SP.Rate               |         |             |                                 |
| 36      | 0x0024      | Programmer.Run.SegTimeLeft |         |             |                                 |
| 37      | 0x0025      | Loop.OP.Rate               |         |             |                                 |

Part No HA027988 Issue 3.0



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Aug-04

# 13.8 Ethernet

### 13.8.1 Instrument setup

Note1: It is recommended that you setup the communications settings for each instrument before connecting it to any Ethernet network. This is not essential but network conflicts may occur if the default settings interfere with equipment already on the network. By default the instruments are set to a fixed IP address of 192.168.111.222 with a default SubNet Mask setting of 255.255.255.0.

Note2: IP Addresses are usually presented in the form "xxx.xxx.xxx". Within the instrument each element of the IP Address is shown and configured separately.

"IP address 1" relates to the first set of three digits, IP address 2 to the second set of three digits and so on. This also applies to the SubNet Mask, Default Gateway and Preferred master IP Address.

### 13.8.2 MAC address display

Each Ethernet module contains a unique MAC address, normally presented as a 12 digit hexadecimal number in the format "aa-bb-cc-dd-ee-ff".

In the 3500 instruments MAC addresses are shown as 6 separate hexadecimal values in the "COMMS" page. MAC1 shows the first pair of digits (example "0xAA"), MAC2 shows the second pair of digits and so on.

The MAC address can be found by powering up the instrument and navigating to the "COMMS" page. At the bottom of the "COMMS" page you will find a 'Show Mac' parameter. Set this parameter to 'Yes' and the MAC address of the Ethernet communications card fitted will appear in the list.

### 13.8.3 DHCP Settings

You need to consult with your network administrator to determine if the IP Addresses for the instruments should be fixed or Dynamically allocated by a DHCP server.

If the IP Addresses are to be dynamically allocated then all MAC addresses must be supplied to the network administrator.

For fixed IP Addresses the Network Administrator will provide the IP address as well as a SubNet Mask. These must be configured into the instrument during set-up through the "COMMS" page. Remember to note the allocated addresses.

### 13.8.4 **Network Connection**

Screw the "RJ45" adapter into the instrument "H" port, as shown in section 1.7.6. Use standard CAT5 cable to connect to the Ethernet 10BaseT switch or hub. Use cross-over cable only if connecting one-to-one with a PC acting as network master.

### 13.8.5 **Dynamic IP Addressing**

Within the "Comms" page of the instrument set the "DHCP enable" parameter to "Dynamic". Once connected to the network and powered, the instrument will acquire its "IP address", "SubNet Mask" and "Default gateway" from the DHCP Server and display this information within a few seconds.

### 13.8.6 **Fixed IP Addressing**

Within the "Comms" page of the instrument ensure the "DHCP enable" parameter is set to "Fixed", then set the IP address and SubNet Mask as required (and defined by your network administrator).

### 13.8.7 Additional notes

- 1. The "Comms" page also includes configuration settings for "Default Gateway", these parameters will be set automatically when Dynamic IP Addressing is used. When fixed IP addressing is used these settings are only required if the instrument needs to communicate wider than the local area network i.e. over the internet – see your network administrator for the required setting.
- 2. The "Comms" page also includes configuration settings for "Preferred Master". Setting this IP address to the IP Address of a particular PC will guarantee that one of the 4 available Ethernet sockets will always be reserved for that PC (reducing the number of available sockets for anonymous connections to 3).



### 13.8.8 **iTools Setup**

iTools configuration package, version V5.60 or later, may be used to configure Ethernet communications.

The following instructions configure Ethernet.

To include a Host Name/Address within the iTools scan:-

- 1. Ensure iTools is NOT running before taking the following steps
- 2. Within Windows, click 'Start', the 'Settings', then 'Control Panel'
- 3. In control panel select 'iTools'
- 4. Within the iTools configuration settings select the 'TCP/IP' tab
- 5. Click the 'Add' button to add a new connection
- 6. Enter a name for this TCP/IP connection
- 7. Click the 'Add' button to add the host name (details from your network administrator) or IP address of the instrument in the 'Host Name/ Address' section
- 8. Click 'OK' to confirm the new Host Name/IP Address you have entered
- 9. Click 'OK' to confirm the new TCP/IP port you have entered
- 10. You should now see the TCT/IP port you have configured within the TCP/IP tab of the iTools control panel settings

iTools is now ready to communicate with an instrument at the Host Name/Ip Address you have configured

| List Header - Comms |                                                                              | Sub-header: H    |                                                  |         |                 |  |
|---------------------|------------------------------------------------------------------------------|------------------|--------------------------------------------------|---------|-----------------|--|
| Name<br>to select   | Parameter Description                                                        | Value            | D to change                                      | Default | Access<br>Level |  |
| ldent               | Identifies that the comms<br>module is fitted in the<br>selected slot H or J | None<br>Comms    | No module fitted<br>Communications module fitted |         | R/O             |  |
| Protocol            | Digital communications protocol                                              | MODBUS;          | EIBISYNCH; Profibus; Devicenet; Ethernet         |         |                 |  |
| Address             | Instrument address                                                           | 1 to 253         |                                                  | 1       |                 |  |
| DHCP enable         | See section 13.8                                                             | Fixed<br>Dynamic |                                                  | Fixed   |                 |  |
| IP Address 1        | See section 13.8                                                             | 0 to 255         |                                                  | 192     |                 |  |
| IP Address 2        | See section 13.8                                                             | 0 to 255         |                                                  | 168     |                 |  |
| IP Address 3        | See section 13.8                                                             | 0 to 255         |                                                  | 111     |                 |  |
| IP Address 4        | See section 13.8                                                             | 0 to 255         |                                                  | 222     |                 |  |
| Subnet mask 1       | See section 13.8                                                             | 0 to 255         |                                                  | 255     |                 |  |
| Subnet mask 2       | See section 13.8                                                             | 0 to 255         |                                                  | 255     |                 |  |
| Subnet mask 3       | See section 13.8                                                             | 0 to 255         |                                                  | 255     |                 |  |
| Subnet mask 4       | See section 13.8                                                             | 0 to 255         |                                                  | 0       |                 |  |
| Default GW 1        | See section 13.8                                                             |                  |                                                  | 0       |                 |  |
| Default GW 2        | See section 13.8                                                             |                  |                                                  | 0       |                 |  |
| Default GW 3        | See section 13.8                                                             |                  |                                                  | 0       |                 |  |
| Default GW 4        | See section 13.8                                                             |                  |                                                  | 0       |                 |  |
| Pref mstr IP 1      | See section 13.8                                                             |                  |                                                  | 0       |                 |  |
| Pref mstr IP 2      | See section 13.8                                                             |                  |                                                  | 0       |                 |  |
| Pref mstr IP 3      | See section 13.8                                                             |                  |                                                  | 0       |                 |  |
| Pref mstr IP 4      | See section 13.8                                                             |                  |                                                  | 0       |                 |  |
| Show MAC            | See section 13.8                                                             | No; Yes          |                                                  | No      |                 |  |
| Network             | Status of network                                                            | Running          | Network connected and working                    |         | R/O             |  |
|                     |                                                                              | Offline          | Network not connected or working                 |         |                 |  |

### **Ethernet Parameters** 13.8.9

Part No HA027988 Issue 3.0



Aug-04

### 14. COUNTERS, TIMERS, TOTALISERS, REAL TIME CLOCK

A series of function blocks are available which are based on time/date information. These may be used as part of the control process.

# 14.1 Counters

Up to two counters are available. They provide a synchronous edge triggered event counter.



Figure 14-1: Counter Function Block

When configured as an Up counter, Clock events increment Count until reaching the Target. On reaching Target RippleCarry is set true. At the next clock pulse, Count returns to zero. Overflow is latched true and RippleCarry is returned false.

When configured as a down counter, Clock events decrement Count until it reaches zero. On reaching zero RippleCarry is set true. At the next clock pulse, Count returns to the Target count. Overflow is latched true and RippleCarry is reset false

Counter blocks can be cascaded as shown in the diagram below





The RippleCarry output of one counter acts as an enabling input for the next counter. In this respect the next counter in sequence can only detect a clock edge if it was enabled on the previous clock edge. This means that the Carry output from a counter must lead its Overflow output by one clock cycle. The Carry output is, therefore, called a RippleCarry as it is NOT generated on an Overflow (i.e. Count  $\geq$  Target) but rather when the count reaches the target (i.e. Count = Target). The timing diagram below illustrates the principle for the Up Counter.



Figure 14-3: Timing Diagram for an Up Counter



120.

Part No HA027988

E-mail:hvssystem@hvssystem.com

Issue 3.0

Aug-04

2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel: 03 26 82 49 29

Site web : www.hvssystem.com

### 14.1.1 **Counter Parameters**

| List Header - Count |                                                                                                                                                                             | Sub-headers: 1 to 2 |                                       |         |                 |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------|---------|-----------------|--|
| Name<br>to select   | Parameter Description                                                                                                                                                       | Value               | to change                             | Default | Access<br>Level |  |
| Enable              | Counter enable.<br>Counter 1 or 2 is enabled in the<br>Instrument configuration page but<br>they can also be turned on or off<br>in this list                               | Yes<br>No           | Enabled<br>Disabled                   | Yes     | L3              |  |
| Direction           | Defines count up or count down.<br>This is not intended for dynamic<br>operation (i.e. subject to change<br>during counting). It can only be<br>set in configuration level. | Up<br>Down          | Up counter<br>Down counter            | Up      | Conf<br>L3 R/O  |  |
| Ripple<br>Carry     | Ripple carry to act as an enabling<br>input to the next counter. It is<br>turned On when the counter<br>reaches the target set                                              | Off                 |                                       |         | R/O             |  |
| Overflow            | Overflow flag is turned on when the counter reaches zero                                                                                                                    |                     |                                       |         | R/O             |  |
| Clock               | Tick period to increment or<br>decrement the count. This is<br>normally wired to an input source<br>such as a digital input.                                                | 0<br>1              | No clock input<br>Clock input present | 0       | R/O if<br>wired |  |
| Target              | Level to which the counter is aiming                                                                                                                                        | 0 to 99999          | )                                     |         | L3              |  |
| Count               | Counts each time a clock input occurs until the target is reached.                                                                                                          | 0 to 99999          | 0 to 99999                            |         | R/O             |  |
| Reset               | Resets the counter                                                                                                                                                          | No<br>Yes           | Not in reset<br>Reset                 | No      | L3              |  |
| Clear<br>O'flow     | Clear overflow                                                                                                                                                              | No<br>Yes           | Not cleared<br>Cleared                | No      | L3              |  |

Part No HA027988 Issue 3.0 Aug-04



## 14.2 Timers

Up to four timers can be configured. Each one can be configured to a different type and can operate independently of one another.

### 14.2.1 **Timer Types**

Each timer block can be configured to operate in four different modes. These modes are explained below

### 14.2.2 **On Pulse Timer Mode**

This timer is used to generate a fixed length pulse from an edge trigger.

- The output is set to On when the input changes from Off to On. •
- The output remains On until the time has elapsed ٠
- If the 'Trigger' input parameter recurs while the Output is On, the Elapsed Time will reset to zero and • the Output will remain On
- The triggered variable will follow the state of the output •

The diagram illustrates the behaviour of the timer under different input conditions.







Aug-04

Part No HA027988 Issue 3.0

### 14.2.3 **Off Delay Timer Mode**

This timer provides a delay between the trigger event and the Timer output. If a short pulse triggers the Timer, then a pulse of one sample time (110ms) will be generated after the delay time.

- The Output is set to Off when the Input changes from Off to On.
- The Output remains Off until the Time has elapsed.
- If the Input returns to Off before the time has elapsed, the Timer will continue until the Elapsed Time equals the Time. It will then generate a pulse of one Sample Time duration.
- Once the Time has elapsed, the Output will be set to On.
- The Output will remain On until the Input is cleared to Off.
- The Triggered variable will be set to On by the Input changing from Off to On. It will remain On until . both the Time has elapsed and the Output has reset to Off.

The diagram illustrates the behaviour of the timer under different input conditions.

| Input        |              |      |
|--------------|--------------|------|
| Output       | Time<br>◀──▶ | Time |
| Elapsed Time |              |      |
| Triggered    |              |      |

Figure 14-5: Off Delay Timer Under Different Input Conditions

Part No HA027988 Aug-04 Issue 3.0



## 14.2.4 One Shot Timer Mode

This timer behaves like a simple oven timer.

- When the Time is edited to a non-zero value the Output is set to On
- The Time value is decremented until it reaches zero. The Output is then cleared to Off
- The Time value can be edited at any point to increase or decrease the duration of the On time
- Once set to zero, the Time is not reset to a previous value, it must be edited by the operator to start the next On-Time
- The Input is used to gate the Output. If the Input is set, the time will count down to zero. If the Input is cleared to Off, then the Time will hold and the Output will switch Off until the Input is next set.

Note: since the Input is a digital wire, it is possible for the operator to NOT wire it, and set the Input value to On which permanently enables the timer.

• The Triggered variable will be set to On as soon as the Time is edited. It will reset when the Output is cleared to Off.



The behaviour of the timer under different input conditions is shown below.

Figure 14-6: One Shot Timer

D

С

в

Α



Output

Aug-04

Part No HA027988 Issue 3.0

## 14.2.5 Compressor or Minimum On Timer Mode

This timer has been targeted at guaranteeing that the output remains On for a duration after the input signal has been removed. It may be used, for example, to ensure that a compressor is not cycled excessively.

- The output will be set to On when the Input changes from Off to On.
- When the Input changes from On to Off, the elapsed time will start incrementing towards the set Time.
- The Output will remain On until the elapsed time has reached the set Time. The Output will then switch Off.
- If the Input signal returns to On while the Output is On, the elapsed time will reset to 0, ready to begin incrementing when the Input switches Off.
- The Triggered variable will be set while the elapsed time is >0. It will indicate that the timer is counting.

The diagram illustrates the behaviour of the timer under different input conditions.



Figure 14-7: Minimum On Timer Under Different Input Conditions

Part No HA027988 Issue 3.0 Aug-04



## 3500 series Controllers

## 14.2.6 Timer Parameters

| List Header - Timer |                                                                                                                                                                                                                           | Sub-headers: 1 to 4 |                                                                                                                   |           |                 |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------|-----------|-----------------|--|
| Name<br>To select   | Parameter Description                                                                                                                                                                                                     | Value               | to change                                                                                                         | Default   | Access<br>Level |  |
| Туре                | Timer type                                                                                                                                                                                                                | Off                 | Timer not configured                                                                                              | Off or as | Conf            |  |
|                     |                                                                                                                                                                                                                           | On Pulse            | Generates a fixed length pulse from an edge trigger                                                               | ordered   |                 |  |
|                     |                                                                                                                                                                                                                           | Off Delay           | Provides a delay between input trigger event and timer putput                                                     |           |                 |  |
|                     |                                                                                                                                                                                                                           | One Shot            | Simple oven timer which reduces to zero before switching off                                                      |           |                 |  |
|                     |                                                                                                                                                                                                                           | Min-On Ti           | Compressor timer guaranteeing that the<br>output remains ON for a time after the<br>input signal has been removed |           |                 |  |
| Time                | Duration of the timer. For<br>re-trigger timers this value<br>is entered once and copied<br>to the time remaining<br>parameter whenever the<br>timer starts. For pulse<br>timers the time value itself<br>is decremented. | 0:00.0 to 99:59:59  |                                                                                                                   |           | L3              |  |
| Elapsed Time        | Timer elapsed time                                                                                                                                                                                                        | 0:00.0 to 99:       | 59:59                                                                                                             |           | R/O L3          |  |
| Input               | Trigger/Gate input. Turn<br>On to start timing                                                                                                                                                                            | Off<br>On           | Off<br>Start timing                                                                                               | Off       | L3              |  |
| Output              | Timer output                                                                                                                                                                                                              | Off                 | Output off                                                                                                        |           | L3              |  |
|                     |                                                                                                                                                                                                                           | On                  | Timer has timed out                                                                                               |           |                 |  |
| Triggered           | Timer triggered (timing).<br>This is a status output to<br>indicate that the timers<br>input has been detected                                                                                                            | Off<br>On           | Not timing<br>Timer timing                                                                                        |           | R/O L3          |  |

The above table is repeated for Timers 2 to 4.

Aug-04

Part No HA027988 Issue 3.0



## 14.3 Totalisers

There are two totaliser function blocks which are used to measure the total quantity of a measurement integrated over time. A totaliser can, by soft wiring, be connected to any measured value. The outputs from the totaliser are its integrated value and an alarm state. The user may set a setpoint which causes the alarm to activate once the integration exceeds the setpoint.

The totaliser has the following attributes:-

1. Run/Hold/Reset

In Run the totaliser will integrate its input and continuously test against an alarm setpoint.

In Hold the totaliser will stop integrating its input but will continue to test for alarm conditions.

In Reset the totaliser will be zeroed, and alarms will be reset.

2. Alarm Setpoint

If the setpoint is a positive number, the alarm will activate when the total is greater than the setpoint.

If the setpoint is a negative number, the alarm will activate when the total is lower (more negative) than the setpoint.

If the totaliser alarm setpoint is set to 0.0, the alarm will be off. It will not detect values above or below.

The alarm output is a single state output. It may be cleared by resetting the totaliser, or by changing the alarm setpoint.

- The total is limited to a maximum of 99999 and a minimum of -19999. 3.
- The totaliser ensures that resolution is maintained when integrating small values onto a large total. 4

| List Header - Total Sub-headers: 1 to 2 |                                                       |                                                                                                                                                                              |         |                 |
|-----------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|
| Name<br>To select                       | Parameter Description                                 | Value<br>or To change                                                                                                                                                        | Default | Access<br>Level |
| TotalOp                                 | The totalised value                                   | 99999 t o-19999                                                                                                                                                              |         | R/O L3          |
| In                                      | The value to be totalised                             | -9999.9 to 9999.9.<br>Note:- the totaliser stops accumulating if the input is<br>'Bad'.                                                                                      |         | L3              |
| Units                                   | Totaliser units                                       | None<br>AbsTemp<br>V, mV, A, mA,<br>PH, mmHg, psi, Bar, mBar, %RH, %, mmWG, inWG, inWW,<br>Ohms, PSIG, %O2, PPM, %CO2, %CP, %/sec,<br>RelTemp<br>mBar/Pa/T<br>sec, min, hrs, |         | Conf            |
| Res'n                                   | Totaliser resolution                                  | XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX                                                                                                                           | XXXXX   | Conf            |
| Alarm SP                                | Sets the totalised value at which an alarm will occur | -99999 to 99999                                                                                                                                                              |         | L3              |

### 14.3.1 **Totaliser Parameters**

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

| Alarm<br>Output | This is a read only value<br>which indicates the alarm<br>output On or Off. | Off<br>On | Alarm inactive<br>Alarm output active | Off | L3 |
|-----------------|-----------------------------------------------------------------------------|-----------|---------------------------------------|-----|----|
|                 | The totalised value can be<br>a positive number or a<br>negative number.    |           |                                       |     |    |
|                 | If the number is positive the alarm occurs when                             |           |                                       |     |    |
|                 | Total > + Alarm Setpoint                                                    |           |                                       |     |    |
|                 | If the number is negative the alarm occurs when                             |           |                                       |     |    |
|                 | Total > - Alarm Setpoint                                                    |           |                                       |     |    |
| Run             | Runs the totaliser                                                          | No        | Timer not running                     | No  | L3 |
|                 |                                                                             | Yes       | Select Yes to run the timer           |     |    |
| Hold            | Holds the totaliser at its                                                  | No        | Timer not in hold                     | No  | L3 |
|                 | current value                                                               | Yes       | Hold timer                            |     |    |
|                 | Note:                                                                       |           |                                       |     |    |
|                 | The Run & Hold<br>parameters are designed to<br>be wired to (for example)   |           |                                       |     |    |
|                 | digital inputs. Run must be                                                 |           |                                       |     |    |
|                 | 'on' and Hold must be 'off' for the totaliser to operate.                   |           |                                       |     |    |
| Reset           | Resets the totaliser                                                        | No        | Timer not in reset                    | No  | L3 |
|                 |                                                                             | Yes       | Timer in reset                        |     |    |

128.

# 14.4 Real Time Clock

A real time clock is used to provide a daily and weekly scheduling facility and provides two corresponding alarms. The configuration for an alarm is an On-Day and an On-Time and an Off-Day and an Off-Time.

| Day Option | Description                                                |
|------------|------------------------------------------------------------|
| Never      | Disables the alarm feature                                 |
| Monday     | Alarm will only be available on a Monday                   |
| Tuesday    | Alarm will only be available on a Tuesday                  |
| Wednesday  | Alarm will only be available on a Wednesday                |
| Thursday   | Alarm will only be available on a Thursday                 |
| Friday     | Alarm will only be available on a Friday                   |
| Saturday   | Alarm will only be available on a Saturday                 |
| Sunday     | Alarm will only be available on a Sunday                   |
| Mon-Fri    | Alarm will only be available between Monday to Friday      |
| Mon-Sat    | Alarm will only be available on between Monday to Saturday |
| Sat-Sun    | Alarm will only be available on between Saturday to Sunday |
| Everyday   | Alarm always available                                     |

The day options supported are:-

For example, it is possible to configure an alarm to be activated at 07:30 on Monday and deactivated at 17:15 on Friday

The output from the Real Time Clock alarms may be used to place the instrument in standby or to sequence a batch process.

The Real Time Clock function will set/clear the alarm outputs only at the time of the alarm. Therefore, it is possible to manually override the alarms by editing the output to On/Off between alarm activations.

The Real Time Clock does not display date or year.

| List Header - RTClock  |                                                                  | Sub-headers: None          |                                                                                      |         |                 |  |
|------------------------|------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------|---------|-----------------|--|
| Name<br>To select      | Parameter Description                                            | Value                      | to change                                                                            | Default | Access<br>Level |  |
| Mode                   | This parameter can be used to set the clock                      | Running<br>Edit<br>Stopped | Normal operation<br>Allows the clock to be set<br>Clock stopped (saves battery life) | Running | L3              |  |
| Day                    | Displays the day or allows the day to be set when in Edit mode   | See table<br>above         |                                                                                      |         | L3              |  |
| Time                   | Displays the time or allows the time to be set when in Edit mode | 00:00:00 to 23:59:59       |                                                                                      |         | L3              |  |
| On Day1<br>On Day2     | Days when alarm 1 and 2 are activated                            | See table above            |                                                                                      |         | L3              |  |
| On Time1<br>On Time2   | Time of day when alarm 1 and 2 are activated                     | 00:00:00 to 23:59:59       |                                                                                      |         | L3              |  |
| Off Day1<br>Off Day2   | Days when alarm 1 and 2 are de-<br>activated                     | See table above            |                                                                                      |         | L3              |  |
| Off Time1<br>Off Time2 | Time of day when alarm 1 and 2 are de-activated                  | 00:00:00 to 23:59:59       |                                                                                      |         | L3              |  |
| Out1<br>Out2           | Alarm 1 and 2 output                                             | Off<br>On                  | Alarm output not activated<br>Alarm output activated                                 |         | L3              |  |

14.4.1 Real Time Clock Parameters

Part No HA027988 Issue 3.0 Aug-04



# **15. APPLICATION SPECIFIC**

# 15.1 Humidity Control

## 15.1.1 Overview

Humidity (and altitude) control is a standard feature of the 3500 controller. In these applications the controller may be configured to generate a setpoint profile (see Chapter 20 'Programmer Operation').

Also the controller may be configured to measure humidity using either the traditional Wet/Dry bulb method (figure 15.1) or it may be interfaced to a solid state sensor.

The controller output may be configured to turn a refrigeration compressor on and off, operate a bypass valve, and possibly operate two stages of heating and/or cooling

## 15.1.2 Example Of Humidity Controller Connections



In the above example the following modules are fitted. This will change from installation to installation:

| Module 1             | Analogue or relay to drive dehumidify valve                                    |
|----------------------|--------------------------------------------------------------------------------|
| Module 3             | PV input module for wet bulb temperature RTD                                   |
| Standard Digital I/O | Used as logic outputs for humidify solenoid valve and temperature control SCR  |
| Standard PV Input    | For the dry bulb RTD used for the temperature control and humidity calculation |

Figure 15-1: Example of Humidity Controller Connections



# 15.1.3 Temperature Control Of An Environmental Chamber

The temperature of an environmental chamber is controlled as a single loop with two control outputs. The heating output time proportions electric heaters, usually via a solid state relay. The cooling output operates a refrigerant valve which introduces cooling into the chamber. The controller automatically calculates when heating or cooling is required.

# 15.1.4 Humidity Control Of An Environmental Chamber

Humidity in a chamber is controlled by adding or removing water vapour. Like the temperature control loop two control outputs are required, i.e. Humidify and Dehumidify.

To humidify the chamber water vapour may be added by a boiler, an evaporating pan or by direct injection of atomised water.

If a boiler is being used adding steam increases the humidity level. The humidify output from the controller regulates the amount of steam from the boiler that is allowed into the chamber.

An evaporating pan is a pan of water warmed by a heater. The humidify output from the controller humidity regulates the temperature of the water.

An atomisation system uses compressed air to spray water vapour directly into the chamber. The humidify output of the controller turns on or off a solenoid valve.

Dehumidification may be accomplished by using the same compressor used for cooling the chamber. The dehumidify output from the controller may control a separate control valve connected to a set of heat exchanger coils.

Part No HA027988 Issue 3.0 Aug-04



# 15.2 Humidity Parameters

| List Header - Hu | umidity                                                                                                                                                                                                                                                | Sub-headers: None |                                                             |                |        |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------|----------------|--------|
| Name             | Parameter Description                                                                                                                                                                                                                                  | Value             | ~                                                           | Default        | Access |
| to select        |                                                                                                                                                                                                                                                        | ( or (            | to change                                                   |                | Level  |
| Res'n            | Resolution of the relative                                                                                                                                                                                                                             | XXXXX             |                                                             |                | Conf   |
|                  | humidity                                                                                                                                                                                                                                               | XXXX.X            |                                                             |                |        |
|                  |                                                                                                                                                                                                                                                        | XXX.XX            |                                                             |                |        |
|                  |                                                                                                                                                                                                                                                        | XX.XXX            |                                                             |                |        |
|                  |                                                                                                                                                                                                                                                        | X.XXXX            |                                                             |                |        |
| PsycK            | The psychrometric constant at a given pressure (6.66E-4 at standard atmospheric pressure). The value is dependent on the speed of air-flow across the wet bulb, and hence the rate of evaporation. 6.66E-4 is for the ASSMANN ventilated Psychrometer. | 0.0 to 10.0       |                                                             | 6.66           | L3     |
| Pressure         | Atmospheric Pressure                                                                                                                                                                                                                                   | 0.0 to 2000.0     |                                                             | 1013.0<br>mbar | L3     |
| WetT             | Wet Bulb Temperature                                                                                                                                                                                                                                   | Range unit        | S                                                           |                |        |
| WetOffs          | Wet bulb temperature offset                                                                                                                                                                                                                            | -100.0 to 1       | 00.0                                                        | 0.0            | L3     |
| DryT             | Dry Bulb Temperature                                                                                                                                                                                                                                   | Range unit        | S                                                           |                |        |
| RelHumid         | Relative Humidity is the ratio of<br>actual water vapour<br>pressure (AVP) to the saturated<br>water vapour pressure (SVP) at a<br>particular temperature and<br>pressure                                                                              | 0.0 to 100.       | 0                                                           | 100            | R/O    |
| DewPoint         | The dew point is the<br>temperature to which air would<br>need to cool (at constant<br>pressure and water vapour<br>content) in order to reach<br>saturation                                                                                           | -999.9 to 999.9   |                                                             |                | R/O    |
| SBreak           | Indicates that one of the probes is broken.                                                                                                                                                                                                            | No<br>Yes         | No sensor break detection<br>Sensor break detection enabled |                | Conf   |

132.

# 15.3 Zirconia (Carbon Potential) Control

A 3500 controller may be supplied to control carbon potential, order code ZC. The controller is often a programmer which generates carbon potential profiles. In this section it is assumed that a programmer is used.

Calculation of PV: The Process Variable can be Carbon Potential, Dewpoint or Oxygen concentration. The PV is derived from the probe temperature input, the probe mV input and remote gas reference input values. Various probe makes are supported. In the 3500 Carbon Potential and Dewpoint can be displayed together.

The following definitions may be useful:-

### 15.3.1 **Temperature Control**

The sensor input of the temperature loop may come from the zirconia probe but it is common for a separate thermocouple to be used. The controller provides a heating output which may be connected to gas burners or thyristors to control electrical heating elements. In some applications a cooling output may also be connected to a circulation fan or exhaust damper.

### 15.3.2 **Carbon Potential Control**

The zirconia probe generates a millivolt signal based on the ratio of oxygen concentrations on the reference side of the probe (outside the furnace) to the amount of oxygen in the furnace.

The controller uses the temperature and carbon potential signals to calculate the actual percentage of carbon in the furnace. This second loop generally has two outputs. One output is connected to a valve which controls the amount of an enrichment gas supplied to the furnace. The second output controls the level of dilution air.

### 15.3.3 Sooting Alarm

In addition to other alarms which may be detected by the controller, the 3500 can trigger an alarm when the atmospheric conditions are such that carbon will be deposited as soot on all surfaces inside the furnace.

### 15.3.4 **Automatic Probe Cleaning**

The 3500 has a probe clean and recovery strategy that can be programmed to occur between batches or manually requested. At the start of the cleaning process a 'snapshot' of the probe mV is taken, and a short blast of compressed air is used to remove any soot and other particles that may have accumulated on the probe. A minimum and maximum cleaning time can be set by the user. If the probe mV has not recovered to within 5% of the snapshot value within the maximum recovery time set then an alarm is given. This indicates that the probe is ageing and replacement or refurbishment is due. During the cleaning and recovery cycle the PV is frozen, thereby ensuring continuous furnace operation. A flag 'PvFrozen' is set which can be used in an individual strategy, for example to hold the integral action during cleaning.

### 15.3.5 **Endothermic Gas Correction**

A gas analyser may be used to determine the CO concentration of the endothermic gas. If a 4-20mA output is available from the analyser, it can be fed into the 3500 to automatically adjust the calculated % carbon reading. Alternatively, this value can be entered manually.

### 15.3.6 **Clean Probe**

As these sensors are used in furnace environments they require regular cleaning. Cleaning (Burn Off) is performed by forcing compressed air through the probe. Cleaning can be initiated either manually or automatically using a timed period. During cleaning the PV output is frozen.

### 15.3.7 **Probe Status**

After cleaning an alarm output, MinCalcT, is generated if the PV does not return to 95% of its previous value within a specified time. This indicates that the probe is deteriorating and should be replaced.

### 15.3.8 Sooting Alarm

An output is generated which indicates that the furnace is about to soot.

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

# 15.4 Zirconia Parameters

| List Header - Zirconia |                                                                                                                               | Sub-headers: None                                                                                                                  |                                                                                                                                                               |         |        |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| Name                   | Parameter Description                                                                                                         | Value                                                                                                                              |                                                                                                                                                               | Default | Access |
| to select              |                                                                                                                               | or 💽 to chan                                                                                                                       | ge                                                                                                                                                            |         | Level  |
| Probe Type             | Configures the type of probe<br>to be used                                                                                    | Drayton<br>Accucarb<br>SSI<br>MacDhui<br>%O2<br>LogO2<br>BoschO2<br>ZircoDew<br>ProbeMV<br>BoschCarb<br>BarberC<br>MMICarb<br>AACC | Drayton<br>Accucarb<br>SSI<br>MacDhui<br>Oxygen<br>Log Oxygen<br>Bosch Oxygen<br>Dewpoint.<br>Probe mV<br>Bosch Carbon<br>Barber-Colman<br>MMI Carbon<br>AACC |         | L3     |
| Res'n                  | Resolution of the calculated result                                                                                           | XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX                                                                                          |                                                                                                                                                               |         | L3     |
|                        | Parameters shown in sha                                                                                                       | ded rows below are no                                                                                                              | t applicable to O2 probes                                                                                                                                     |         |        |
| GasRef                 | Gas reference value                                                                                                           | -9999.9 to 9999.9                                                                                                                  |                                                                                                                                                               | 20.0    | L3     |
| RemGasRef              | Remote gas reference value                                                                                                    | -9999.9 to 9999.9                                                                                                                  |                                                                                                                                                               | 0.0     | L3     |
| RemGasEn               | Enable the remote gas<br>reference. This can be an<br>internal value from the user<br>interface or from an external<br>source | 0<br>1                                                                                                                             | Internal<br>External                                                                                                                                          | 0       | L3     |
| MinCalTemp             | Minimum calculation temperature                                                                                               | -99999 to 99999                                                                                                                    |                                                                                                                                                               | 720     | L3     |
| OxygenExp              | Oxygen exponent                                                                                                               |                                                                                                                                    |                                                                                                                                                               |         |        |
| Tolerance              | Tolerance of the sooting                                                                                                      | -9999.9 to 9999.9                                                                                                                  |                                                                                                                                                               | 1.0     | L3     |
| CleanFreq              | Frequency of the cleaning process                                                                                             | 0:00:00 to 99:59:59 c                                                                                                              | or 100:00 to 500:00                                                                                                                                           | 4:00:00 | L3     |
| CleanTime              | Sets the duration of the clean                                                                                                | 0:00:00 to 99:59:59 c                                                                                                              | or 100:00 to 500:00                                                                                                                                           | 0:00:00 | L3     |
| MinRcovTime            | Minimum recovery time after purging                                                                                           | 0:00:00 to 99:59:59 c                                                                                                              | or 100:00 to 500:00                                                                                                                                           | 0:00:00 | L3     |
| MaxRcovTime            | Maximum recovery time after purging                                                                                           | 0:00:00 to 99:59:59 c                                                                                                              | or 100:00 to 500:00                                                                                                                                           | 0:10:00 | L3     |
| TempInput              | Zirconia probe temperature<br>input value                                                                                     | Temp range                                                                                                                         |                                                                                                                                                               |         | L3     |
| TempOffset             | Sets a temperature offset for the probe                                                                                       | -99999 to 99999                                                                                                                    |                                                                                                                                                               | 0       | L3     |
| ProbeInput             | Zirconia probe mV input                                                                                                       |                                                                                                                                    |                                                                                                                                                               |         | L3     |
| ProbeOffset            | Zirconia probe mV offset                                                                                                      | -99999 to 99999                                                                                                                    |                                                                                                                                                               | 0       | L3     |
| Oxygen                 | Calculated oxygen                                                                                                             |                                                                                                                                    |                                                                                                                                                               |         |        |
| CarbonPot              | Calculated carbon potential                                                                                                   |                                                                                                                                    |                                                                                                                                                               |         | R/O    |

PRÉCONISATEUR DE SOLUTIONS DEPUIS 1985

134.

Aug-04

Part No HA027988 Issue 3.0

| DewPoint    | Zirconia control process value  |               |                                   |    | R/O    |
|-------------|---------------------------------|---------------|-----------------------------------|----|--------|
|             | The O2 or dew point value       |               |                                   |    |        |
|             | derived from temperature and    |               |                                   |    |        |
|             | remote gas reference inputs     |               |                                   |    |        |
| SootAlm     | Probe sooting alarm output      | No            | No alarm output                   |    | L3 R/O |
|             |                                 | Yes           | In alarm                          |    |        |
| ProbeFault  | Probe fault                     | No            |                                   |    | L3     |
|             |                                 | Yes           |                                   |    |        |
| PvFrozen    | This is a Boolean which freezes | No            |                                   |    | R/O    |
|             | the PV during a purging cycle.  | Yes           |                                   |    |        |
|             | It may have been wired, for     |               |                                   |    |        |
|             | example, to disable control     |               |                                   |    |        |
|             |                                 | N.            |                                   |    | R/O    |
| Cleanvalve  | Enable the clean valve          | NO            |                                   |    | K/U    |
|             |                                 | Yes           |                                   |    |        |
| CleanState  | The burn off state of the       | Waiting       |                                   |    | R/O    |
|             | zirconia probe                  | Cleaning      |                                   |    |        |
|             |                                 | Recovering    |                                   |    |        |
| CleanProbe  | Enable clean probe              | No            | Do not clean probe                | No | L3     |
|             | This may be wired to initiate   | Yes           | Initiate probe clean              |    |        |
|             | automatically or if un-wired    |               |                                   |    |        |
|             | can be set by the user          |               |                                   |    |        |
| Time2Clean  | Time to next clean              | 0:00:00 to 99 | 9:59:59 or 100:00 to 500:00       |    | L3 R/O |
| ProbeStatus | Indicates the status of the     | ОК            | Normal working                    |    | L3 R/O |
|             | probe                           | MVSbr         | Probe input in sensor break       |    |        |
|             |                                 | TempSbr       | Temperature input in sensor break |    |        |
|             |                                 | MinCalcT      | Probe deteriorating               |    |        |

# 15.5 Example of Carbon Potential Control Connections





Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

# **16. INPUT MONITOR**

The input monitor may be wired to any variable in the controller. It then provides three functions:-

- 1. Maximum detect
- 2. Minimum detect
- 3. Time above threshold

## 16.1.1 Maximum Detect

This function continuously monitors the input value. If the value is higher than the previously recorded maximum, it becomes the new maximum.

This value is retained following a power fail.

## 16.1.2 Minimum Detect

This function continuously monitors the input value. If the value is lower than the previously recorded minimum, it becomes the new minimum.

This value is retained following a power fail.

## 16.1.3 Time Above Threshold

This function increments a timer whenever the input is above a threshold value. If the timer exceeds 24 hours per day, a counter is incremented. The maximum number of days is limited to 255. A timer alarm can be set on the timer so that once the input has been above a threshold for a period, an alarm output is given.

Applications include:-

- Service interval alarms. This sets an output when the system has been running for a number of days (up to 90 years)
- Material stress alarms if the process cannot tolerate being above a level for a period. This is a style of 'policeman' for processes where the high operating point degrades the life of the machine.
- In internal wiring applications in the controller



Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Aug-04

Part No HA027988 Issue 3.0

# 16.2 Input Monitor Parameters

| List Header - IPMon |                                                                                                                                                                                                                                    |                                                         | Sub-headers: 1 or 2                                                                                                           |         |                     |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|--|
| Name<br>to select   | Parameter Description                                                                                                                                                                                                              | Value                                                   | 💽 to change                                                                                                                   | Default | Access<br>Level     |  |
| Input               | The input value to be monitored                                                                                                                                                                                                    | May be v<br>depend                                      | wired to an input source. The range will on the source                                                                        |         | L3. R/O<br>if wired |  |
| Max                 | The maximum measured value recorded since the last reset                                                                                                                                                                           | As above                                                | 2                                                                                                                             |         | R/O L3              |  |
| Min                 | The minimum measured value recorded since the last reset                                                                                                                                                                           | As above                                                | 2                                                                                                                             |         | R/O L3              |  |
| Threshold           | The input timer accumulates the time the input PV spends above this trigger value.                                                                                                                                                 | As above                                                | 2                                                                                                                             |         | L3                  |  |
| Days Above          | Accumulated days the input has spent above threshold since the last reset.                                                                                                                                                         | Days is a<br>only. Th<br>the Time<br>threshole          | n integer count of the 24 hour periods<br>te Days value should be combined with<br>e value to make the total time above<br>d. |         | R/O L3              |  |
| Time Above          | Accumulated time above the<br>'Threshold' since last reset.                                                                                                                                                                        | The time<br>23:59.9.                                    | e value accumulates from 00:00.0 to<br>Overflows are added to the days value                                                  |         | R/O L3              |  |
| Alm Days            | Days threshold for the monitors<br>time alarm. Used in combination<br>with the Alm Time parameter.<br>The Alm Out is set to true if the<br>inputs accumulated time above<br>threshold is higher than the<br>timer high parameters. | 0 to 255                                                |                                                                                                                               | 0       | L3                  |  |
| Alm Time            | Time threshold for the monitors<br>time alarm. Used in combination<br>with the Alm Days parameter.<br>The Alm Out is set to true if the<br>inputs accumulated time above<br>threshold is higher than the<br>timer high parameters. | 0:00.0 to 99:59:59                                      |                                                                                                                               | 0:00.0  | L3                  |  |
| Alm Out             | Set true if the accumulated time<br>that the input spends above the<br>trigger value is higher than the<br>alarm setpoint.                                                                                                         | Off Normal operation<br>On time above setpoint exceeded |                                                                                                                               |         | R/O L3              |  |
| Reset               | Resets the Max and Min values<br>and resets the time above<br>threshold to zero.                                                                                                                                                   | No<br>Yes                                               | Normal operation<br>Reset values                                                                                              | No      | L3                  |  |
| In Status           | Monitors the status of the input                                                                                                                                                                                                   | Good<br>Bad                                             | Normal operation<br>The input may be incorrectly wired                                                                        |         | R/O L3              |  |

Part No HA027988 Issue 3.0 Aug-04



# 17. CHAPTER 17 LOGIC AND MATHS OPERATORS.

# 17.1 Logic Operators

Logic Operators allow the controller to perform logical calculations on **two** input values. These values can be sourced from any available parameter including Analogue Values, User Values and Digital Values.

The parameters to use, the type of calculation to be performed, input value inversion and 'fallback' value are determined in Configuration level. In levels 1 to 3 you can view the values of each input and read the result of the calculation.

The Logic Operators page is only available if the operators have been enabled in **'Inst'** page sub-header **'Opt'**. It is possible to enable any one of 24 separate calculations – they do not have to be in sequence. In the 'Inst' 'Opts' page they are shown in three sets of 8 labelled 'Lgc2 En1' (enable operator set 1 to 8), 'Lgc2 En2' (enable operator set 9 to 16), and 'Lgc2 En3' (enable operator set 17 to 24). **'Lgc2'** denotes a two input logic operator. When logic operators are enabled a page headed 'Lgc2' can be found using the O button. This page contains up to twenty four instances which are selected using the O or O buttons.



Figure 17-1: 2 Input Logic Operators

Logic Operators are found under the page header 'Lgc2'.

## 17.1.1 Logic 8

Logic 8 operators can perform logic calculations on up to **eight** inputs. The calculations are limited to AND,OR,XOR. Up to two 8 input operators can be enabled in **'Inst'** page sub-header **'Opt'**. They are labelled **'Lgc8'** to denote eight input logic operators. When Lgc8 operators are enabled a page headed 'Lgc8' can be found using the (a) button. This page contains up to two instances which are selected using the (a) or (b) buttons.



Figure 17-2: 8 Input Logic Operators



138.

### **Logic Operations** 17.1.2

The following calculations can be performed:

| Oper              | Operator description                              | Input 1 | Input 2 | Output           |
|-------------------|---------------------------------------------------|---------|---------|------------------|
| 0: OFF            | The selected logic operator is turned off         |         |         | Invert =<br>None |
| 1: AND            | The output result is ON when both Input 1         | 0       | 0       | Off              |
|                   | and Input 2 are ON                                | 1       | 0       | Off              |
|                   |                                                   | 0       | 1       | Off              |
|                   |                                                   | 1       | 1       | On               |
| 2: OR             | The output result is ON when either Input         | 0       | 0       | Off              |
|                   | 1 or Input 2 is ON                                | 1       | 0       | On               |
|                   |                                                   | 0       | 1       | On               |
|                   |                                                   | 1       | 1       | Off              |
| 3: XOR            | Exclusive OR. The output result is true           | 0       | 0       | Off              |
|                   | when one and only one input is ON. If             | 1       | 0       | On               |
|                   | both inputs are ON the output is OFF.             | 0       | 1       | On               |
|                   |                                                   | 1       | 1       | Off              |
| 4: Latch          | Input 1 sets the latch, Input 2 resets the        | 0       | 0       |                  |
|                   | latch.                                            | 1       | 0       |                  |
|                   |                                                   | 0       | 1       |                  |
|                   |                                                   | 1       | 1       |                  |
| 5: Equal (==)     | The output result is ON when Input 1 =<br>Input 2 | 0       | 0       | On               |
|                   |                                                   | 1       | 0       | Off              |
|                   |                                                   | 0       | 1       | Off              |
|                   |                                                   | 1       | 1       | On               |
| 6: Not equal (<>) | The output result is ON when Input 1 =            | 0       | 0       | Off              |
|                   | Input 2                                           | 1       | 0       | On               |
|                   |                                                   | 0       | 1       | Off              |
|                   |                                                   | 1       | 1       | On               |
| 7: Greater than   | The output result is ON when Input 1 >            | 0       | 0       | Off              |
| (>)               | Input 2                                           | 1       | 0       | On               |
|                   |                                                   | 0       | 1       | Off              |
|                   |                                                   | 1       | 1       | Off              |
| 8: Less than (<)  | The output result is ON when Input 1 <            | 0       | 0       | Off              |
|                   | Input 2                                           | 1       | 0       | Off              |
|                   |                                                   | 0       | 1       | On               |
|                   |                                                   | 1       | 1       | Off              |
| 9: Equal to or    | The output result is ON when Input 1 $\geq$       | 0       | 0       | On               |
| Greater than (=>) | Input 2                                           | 1       | 0       | On               |
|                   |                                                   | 0       | 1       | Off              |
|                   |                                                   | 1       | 1       | On               |
| 10: Less than or  | The output result is ON when Input 1 $\leq$       | 0       | 0       | On               |
| Equal to (<=)     | Input 2                                           | 1       | 0       | Off              |
|                   |                                                   | 0       | 1       | On               |
|                   |                                                   | 1       | 1       | On               |

Note 1: The numerical value is the value of the enumeration

Note 2: For options 1 to 4 an input value of less than 0.5 is considered false and greater than or equal to 0.5 as true.

Part No HA027988 Issue 3.0 Aug-04



# 17.1.3 Logic Operator Parameters

| List Header – Lgc2 (2 Input Operators) |                                                                                     | Sub-headers: 1 to 24                                                                               |                                                   |         |                 |
|----------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------|---------|-----------------|
| Name<br>to select                      | Parameter Description                                                               | Value<br>or To change                                                                              |                                                   | Default | Access<br>Level |
| Oper                                   | To select the type of operator                                                      | See previous table                                                                                 |                                                   | None    | Conf<br>L3 R/O  |
| Input1                                 | Input 1                                                                             | Normally wired to a logic, analogue or user value.<br>May be set to a constant value if not wired. |                                                   | 0       | L3              |
| Input2                                 | Input 2                                                                             |                                                                                                    |                                                   |         |                 |
| Fall Type                              | The fallback state of the output<br>if one or both of the inputs is<br>bad          | 0: FalseBad                                                                                        | The output value is FALSE and the status is GOOD. |         | Conf<br>L3 R/O  |
|                                        |                                                                                     | 1: TrueBad                                                                                         | The output value is FALSE and the status is BAD   |         |                 |
|                                        |                                                                                     | 2: FalseGood                                                                                       | The output value is TRUE and the status is GOOD   |         |                 |
|                                        |                                                                                     | 3: TrueGood                                                                                        | The output value is TRUE and the status is BAD.   |         |                 |
| Invert                                 | The sense of the input value, may<br>be used to invert one or both of<br>the inputs | 0: None                                                                                            | Neither input inverted                            |         | Conf            |
|                                        |                                                                                     | 1: Input1                                                                                          | Invert input 1                                    |         | L3 R/O          |
|                                        |                                                                                     | 2: Input2                                                                                          | Invert input 2                                    |         |                 |
|                                        |                                                                                     | 3: Both                                                                                            | Invert both inputs                                |         |                 |
| Output                                 | The output from the operation is a boolean (true/false) value.                      | On                                                                                                 | Output activated                                  |         | R/O             |
|                                        |                                                                                     | Off                                                                                                | Output not activated                              |         |                 |
| Status                                 | The status of the result value                                                      | Good                                                                                               |                                                   |         | R/O             |
|                                        |                                                                                     | Bad                                                                                                |                                                   |         |                 |

PRÉCONISATEUR DE SOLUTIONS DEPUIS 1985

140.

E-mail:hvssystem@hvssystem.com

Site web : www.hvssystem.com

# 17.2 Eight Input Logic Operators

The eight input logic operator may be used to perform operations on eight inputs. It is possible to enable two eight input logic operators from the **'Inst' 'Opt'** page. When this is done a page headed **'Lgc8'** can be found using the (a) button. This page contains up to two instances which are selected using the (a) or (b) button.

| List Header – Lgc8 (8 Input Operators) |                                                                                                                                                 | Sub-headers: 1 to 2                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |         |                 |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------|-----------------|
| Name<br>to select                      | Parameter Description                                                                                                                           | Value<br>or  to change                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           | Default | Access<br>Level |
| Oper                                   | To select the type of operator                                                                                                                  | 0: OFF<br>1: AND<br>2: OR<br>3: XOR                                                                                                                                                                                                                                                                                                                                                                                | Operator turned off<br>Output ON when all inputs are ON<br>Output ON when one input is ON<br>Exclusive OR | OFF     | Conf<br>L3 R/O  |
| NumIn                                  | This parameter is used to<br>configure the number of inputs<br>for the operation                                                                | 1 to 8                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |         | Conf<br>L3 R/O  |
| Invert                                 | Used to invert selected inputs<br>prior to operation.<br>This is a status word with one bit<br>per input, the left hand bit<br>inverts input 1. | No inputs inverted<br>All 8 inputs inverted<br>When configuring over comms, the invert<br>parameter is interpreted as a bitfield where:<br>0x1 - input 1<br>0x2 - input 2<br>0x4 - input 3<br>0x8 - input 4<br>0x10 - input 5<br>0x20 - input 6<br>0x40 - input 7<br>0x90 - input 8                                                                                                                                |                                                                                                           |         | L3              |
| Out Invert                             | Invert the output                                                                                                                               | No<br>Yes                                                                                                                                                                                                                                                                                                                                                                                                          | Output not inverted<br>Output inverted                                                                    | No      | L3              |
| In1 to In8                             | Input state 1 to 8                                                                                                                              | Normally wired to a logic, analogue or user value.<br>When wired to a floating point, values less than<br>or equal to -0.5 or greater than or equal to 1.5<br>will be rejected (e.g. the value of the lgc8 block<br>will not change).<br>Values between -0.5 and 1.5 will be interpreted<br>as ON when greater than or equal to 0.5 and OFF<br>when less than 0.5.<br>May be set to a constant value if not wired. |                                                                                                           | Off     | L3              |
| Out                                    | Output result of the operator                                                                                                                   | On<br>Off                                                                                                                                                                                                                                                                                                                                                                                                          | Output activated<br>Output not activated                                                                  |         | R/O             |

# 17.2.1 Eight Input Logic Operator Parameters

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

# 17.3 Maths Operators

Maths Operators (sometimes known as Analogue Operators) allow the controller to perform mathematical operations on two input values. These values can be sourced from any available parameter including Analogue Values, User Values and Digital Values. Each input value can be scaled using a multiplying factor or scalar.

The parameters to use, the type of calculation to be performed and the acceptable limits of the calculation are determined in Configuration level. In access level 3 you can change values of each of the scalars.

The 'Math' Operators page is only available if the operators have been enabled in **'Inst'** page sub-header **'Opt'**. It is possible to enable any one of 24 separate calculations – they do not have to be in sequence. In the 'Inst' 'Opts' page they are shown in three sets of 8 labelled 'Math2 En1' (enable operator set 1 to 8), 'Math 2 En2' (enable operator set 9 to 16), and 'Math En3' (enable operator set 17 to 24). **'Math2'** denotes a two input math operator. When math operators are enabled a page headed 'Math2' can be found using the (a) button. This page contains up to twenty four instances which are selected using the  $\bigcirc$  or  $\bigcirc$  button.



Figure 17-3: 2 Input Math Operators

142.

### 17.3.1 **Math Operations**

The following operations can be performed:

| 0: Off                             | The selected analogue operator is turned off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1: Add                             | The output result is the addition of Input 1 and Input 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2: Subtract (Sub)                  | The output result is the difference between Input 1 and Input 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    | where Input 1 > Input 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3: Multiply (Mul)                  | The output result is the Input 1 multiplied by Input 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4: Divide (Div)                    | The output result is Input 1 divided by Input 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5: Absolute<br>Difference (AbsDif) | The output result is the absolute difference between Input 1 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6: Select Max<br>(SelMax)          | The output result is the maximum of Input 1 and Input 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7: Select Min<br>(SelMin)          | The output result is the minimum of Input 1 and Input 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8: Hot Swap<br>(HotSwp)            | Input 1 appears at the output provided input 1 is 'good'. If input 1 is 'bad' then input 2 value will appear at the output. An example of a bad input occurs during a sensor break condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9: Sample and Hold                 | Normally input 1 will be an analogue value and input B will be digital.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (SmpHld)                           | The output tracks input 1 when input 2 = 1 (Sample).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                    | The output will remain at the current value when input $2 = 0$ (Hold).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                    | If input 2 is an analogue value then any non zero value will be interpreted as 'Sample'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10: Power                          | The output is the value at input 1 raised to the power of the value at input 2. I.e. input $1^{\text{input 2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11: Square Root<br>(Sqrt)          | The output result is the square root of Input 1. Input 2 has no effect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12: Log                            | The output is the logarithm (base 10) of Input 1. Input 2 has no effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13: Ln                             | The output is the logarithm (base n) of Input 1. Input 2 has no effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14: Exp                            | The output result is the exponential of Input 1. Input 2 has no effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15: 10 x                           | The output result is 10 raised to the power of Input 1 value. I.e. 10 <sup>input 1</sup> . Input 2 has no effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 51: Select                         | Any logic value may be used to control which Analogue Input is switched to the output of the Analogue Operator. If the output from the logic operator is true input 1 is switched through to the output. If false input 2 is switched through to the output. See example below:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                    | Logic<br>input 1<br>Logic<br>input 2<br>Logic<br>Op 1<br>An<br>input 1<br>Logic<br>Op 1<br>An<br>input 1<br>Logic<br>Op 1<br>An<br>input 2<br>An<br>input 2<br>An<br>Select<br>Logic 1<br>An<br>Jogic 1<br>An |

When Boolean parameters are used as inputs to analogue wiring, they will be cast to 0.0 or 1.0 as appropriate. Values <= -0.5 or >= 1.5 will not be wired. This provides a way to stop a Boolean updating. Analogue wiring (whether simple re-routing or involving calculations) will always output a real type result, whether the inputs were booleans, integers or reals.

Note: The numerical value is the value of the enumeration

Part No HA027988 Aug-04 Issue 3.0



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29
# 17.3.2 Math Operator Parameters

| List Header – M | lath2 (2 Input Operators)                                                             | Sub-header                                                     | s: 1 to 24                                                                  |         |        |
|-----------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------|---------|--------|
| Name            | Parameter Description                                                                 | Value                                                          |                                                                             | Default | Access |
| to select       |                                                                                       | (▲ or ▼                                                        | to change                                                                   |         | Level  |
| Operation       | To select the type of operator                                                        | See previous                                                   | table                                                                       | None    | Conf   |
| Input1          | Scaling factor on input 1                                                             | Limited to m                                                   | ax float *                                                                  | 1.0     | L3     |
| Scale           |                                                                                       |                                                                |                                                                             |         |        |
| Input2<br>Scale | Scaling factor on input 2                                                             | Limited to m                                                   | nax float *                                                                 | 1.0     | L3     |
| Output          | Units applicable to the output                                                        | None                                                           |                                                                             | None    | Conf   |
| Units           | value                                                                                 | AbsTemp                                                        |                                                                             |         |        |
|                 |                                                                                       | V, mV, A, m/                                                   | ٩,                                                                          |         |        |
|                 |                                                                                       | PH, mmHg, p<br>inWW, Ohm                                       | osi, Bar, mBar, %RH, %, mmWG, inWG,<br>s, PSIG, %O2, PPM, %CO2, %CP, %/sec, |         |        |
|                 |                                                                                       | RelTemp                                                        |                                                                             |         |        |
|                 |                                                                                       | mBar/Pa/T                                                      |                                                                             |         |        |
|                 |                                                                                       | sec, min, hrs,                                                 |                                                                             |         |        |
| Output<br>Res'n | Resolution of the output value                                                        | XXXXX. XXX                                                     | X.X, XXX.XX, XX.XXX, X.XXXX                                                 |         | Conf   |
| Low Limit       | To apply a low limit to the output                                                    | Max float* to High limit (decimal point depends on resolution) |                                                                             |         | Conf   |
| High Limit      | To apply a high limit to the output                                                   | Low limit to<br>on resolution                                  | Low limit to Max float* (decimal point depends on resolution)               |         | Conf   |
| Fallback        | The state of the Output and                                                           | Clip Bad                                                       | Descriptions, see section 17.4.2.                                           |         | Conf   |
|                 | Status parameters in case of a                                                        | Clip Good                                                      |                                                                             |         |        |
|                 | could be used in conjunction                                                          | Fall Bad                                                       |                                                                             |         |        |
|                 | with fallback value                                                                   | Fall Good                                                      |                                                                             |         |        |
|                 |                                                                                       | Upscale                                                        |                                                                             |         |        |
|                 |                                                                                       | DownScale                                                      |                                                                             |         |        |
| Fallback Val    | Defines (in accordance with<br>Fallback) the output value during<br>fault conditions. | Limited to m<br>resolution)                                    | hax float * (decimal point depends on                                       |         | Conf   |
| Input1          | Input 1 value (normally wired to                                                      | Limited to m                                                   | nax float * (decimal point depends on                                       |         | L3     |
| Value           | an input source – could be a<br>User Value)                                           | resolution)                                                    |                                                                             |         |        |
| Input2<br>Value | Input 2 value (normally wired to an input source – could be a                         | Limited to m<br>resolution)                                    | nax float * (decimal point depends on                                       |         | L3     |
|                 | User Value)                                                                           |                                                                |                                                                             |         |        |
| Output<br>Value | Indicates the analogue value of the output                                            | Between hig                                                    | h and low limits                                                            |         | R/O    |
| Status          | This parameter is used in                                                             | Good                                                           |                                                                             |         | R/O    |
|                 | conjunction with Fallback to                                                          | Bad                                                            |                                                                             |         |        |
|                 | operation. Typically, status is                                                       |                                                                |                                                                             |         |        |
|                 | used to flag fault conditions and                                                     |                                                                |                                                                             |         |        |
|                 | may be used as an interlock for other operations.                                     |                                                                |                                                                             |         |        |

\* Max float in this instrument is <u>+</u>9,999,999,999

2 rue René Laennec 51500 Taissy France

Fax: 03 26 85 19 08, Tel : 03 26 82 49 29



144.

# 17.3.3 Sample and Hold Operation

The diagram below shows the operation of the sample and hold feature.



Figure 17-4: Sample and Hold

Part No HA027988 Issue 3.0 Aug-04



# 17.4 Eight Input Analog Multiplexers

The eight Input analog multiplexers may be used to switch one of eight inputs to an output. It is usual to wire inputs to a source within the controller which selects that input at the appropriate time or event. It is possible to enable two multiplexers from the 'Inst' 'Opt' page. When this is done a page headed 'Mux8' can be found using the 1 button. This page contains up to two instances which are selected using the 2or 💽 button.

| List Header – Mux8 (8 Input Operators) |                                                                                                                                                                                                    | Sub-headers: 1 to 2                                                    |                                    |         |                 |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------|---------|-----------------|
| Name<br>to select                      | Parameter Description                                                                                                                                                                              | Value                                                                  | to change                          | Default | Access<br>Level |
| Low Limit                              | The high limit for all inputs and the fall back value.                                                                                                                                             | -99999 to Hi<br>resolution)                                            | gh limit (decimal point depends on |         | Conf            |
| High Limit                             | The low limit for all inputs and the fall back value.                                                                                                                                              | Low limit to resolution)                                               | 99999 (decimal point depends on    |         | Conf            |
| Fallback                               | The state of the Output and<br>Status parameters in case of a<br>fault condition. This parameter<br>could be used in conjunction<br>with Fallback Val.                                             | Clip Bad<br>Clip Good<br>Fall Bad<br>Fall Good<br>Upscale<br>DownScale | Descriptions see section 17.4.2.   |         | Conf            |
| Fallback Val                           | Used (in accordance with<br>Fallback) to define the output<br>value during fault conditions                                                                                                        | -99999 to 99999 (decimal point depends on resolution)                  |                                    |         | Conf            |
| Select                                 | Used to select which input value is assigned to the output.                                                                                                                                        | Input1 to Inj                                                          | out8                               |         | L3              |
| Input1 to 8                            | Input values (normally wired to an input source)                                                                                                                                                   | -99999 to 99<br>resolution)                                            | 9999 (decimal point depends on     |         | L3              |
| Output                                 | Indicates the analogue value of the output                                                                                                                                                         | Between hig                                                            | h and low limits                   |         | R/O             |
| Status                                 | Used in conjunction with Fallback<br>to indicate the status of the<br>operation. Typically, status is<br>used to flag fault conditions and<br>may be used as an interlock for<br>other operations. | Good<br>Bad                                                            |                                    |         | R/O             |

#### 17.4.1 **Multiple Input Operator Parameters**

#### 17.4.2 Fallback

The fallback strategy will come into effect if the status of the input value is bad or if the input value is outside the range of Input Hi and Input Lo.

In this case the fallback strategy may be configured as:-

Fallback Good - the output value will be the fallback value and the output status will be 'Good'.

Fallback Bad – the output value will be the fallback value and the output status will be 'Bad'.

Clip Good – If the input is outside a limit the output will be clipped to the limit and the status will be 'Good'.

Clip Bad – If the input is outside a limit the output will be clipped to the limit and the status will be 'Bad'.

Upscale – the output value will be Output Hi and the output status will be 'Bad'.

Downscale - the output value will be Output Lo and the output status will be 'Bad'.



Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

# **18. CHAPTER 18 INPUT CHARACTERISATION**

# 18.1 Input Linearisation

The Lin16 function block converts an input signal into an output PV using a series of up to 14 straight lines to characterise the conversion.

The function block provides the following behaviour.

- 1. The Input values must be monotonic and constantly rising.
- 2. To convert the MV to the PV, the algorithm will search the table of inputs until the matching segment is found. Once found, the points either side will be used to interpolate the output value.
- 3. If during the search, a point is found which is not above the previous (below for inverted) then the search will be terminated and the segment taken from the last good point to the extreme (In Hi-Out Hi) see following diagram.



Figure 18-1: Linearisation Example

Notes:

- 1. The linearisation block works on rising inputs/rising outputs or rising inputs/falling outputs. It is not suitable for outputs which rise and fall on the same curve.
- 2. Input Lo/Output Lo and Input Hi/Output Hi are entered first to define the low and high points of the curve. It is not necessary to define all 15 intermediate points if the accuracy is not required. Points not defined will be ignored and a straight line fit will apply between the last point defined and the Input Hi/Output Hi point. If the input source has a bad status (sensor break, or overrange) then the output value will also have a bad status.



Issue 3.0

Aug-04

Part No HA027988



### Figure 18-2: How an Inverted Curve will Terminate its search when it detects non-monatonic data

### 18.1.1 Compensation for Sensor Non-Linearities

The custom linearisation feature can also be used to compensate for errors in the sensor or measurement system. The intermediate points are, therefore, available in Level 1 so that known discontinuities in the curve can be calibrated out. The diagram below shows an example of the type of discontinuity which can occur in the linearisation of a temperature sensor.



### Figure 18-3: Compensation for Sensor Discontinuities

The calibration of the sensor uses the same procedure as described above. Adjust the output (displayed) value against the corresponding input value to compensate for any errors in the standard linearisation of the sensor.

Part No HA027988 Issue 3.0 Aug-04



# **18.1.2** Input Linearisation Parameters

| List Header – Lin16 |                                                                                                                                                                                                  | Sub-headers: 1 to 2              |                                                                                                                                                                |         |        |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| Name                | Parameter Description                                                                                                                                                                            | Value                            |                                                                                                                                                                | Default | Access |
| to select           |                                                                                                                                                                                                  | ● or ●                           | 🕑 to change                                                                                                                                                    |         | Level  |
| Units               | Units of the linearised output                                                                                                                                                                   | None                             |                                                                                                                                                                |         | Conf   |
|                     |                                                                                                                                                                                                  | AbsTemp                          |                                                                                                                                                                |         |        |
|                     |                                                                                                                                                                                                  | V, mV, A, r                      | mA,                                                                                                                                                            |         |        |
|                     |                                                                                                                                                                                                  | PH, mmHg<br>inWW, Ohi            | , psi, Bar, mBar, %RH, %, mmWG, inWG,<br>ms, PSIG, %O2, PPM, %CO2, %CP, %/sec,                                                                                 |         |        |
|                     |                                                                                                                                                                                                  | RelTemp                          |                                                                                                                                                                |         |        |
|                     |                                                                                                                                                                                                  | mBar/Pa/T                        |                                                                                                                                                                |         |        |
|                     |                                                                                                                                                                                                  | sec, min, hrs                    | ,<br>                                                                                                                                                          |         |        |
| Out Res'n           | Resolution of the output value                                                                                                                                                                   | XXXXX. XX                        | XX.X, XXX.XX, XX.XXX, X.XXXX                                                                                                                                   |         | Conf   |
| Input               | Input measurement to linearise.<br>Wire to the source for the<br>custom linearisation                                                                                                            | Range of the source of the input |                                                                                                                                                                |         | L3     |
| Fall Value          | In the event of a bad status, the<br>output may be configured to<br>adopt the fallback value. This<br>allows the strategy to dictate a<br>safe output in the event of a<br>fault being detected. |                                  |                                                                                                                                                                |         | L3 R/O |
| Output              | The result of the linearisation                                                                                                                                                                  |                                  |                                                                                                                                                                |         | R/O    |
| In Low              | Adjust to the low input value                                                                                                                                                                    |                                  |                                                                                                                                                                |         | L3 R/O |
| Out Low             | Adjust to correspond to the low input value                                                                                                                                                      |                                  |                                                                                                                                                                |         | L3 R/O |
| In High             | Adjust to the high input value                                                                                                                                                                   |                                  |                                                                                                                                                                |         | L3 R/O |
| Out High            | Adjust to correspond to the high input value                                                                                                                                                     |                                  |                                                                                                                                                                |         | L3 R/O |
| In 1                | Adjust to the first break point                                                                                                                                                                  |                                  |                                                                                                                                                                |         | L3 R/O |
| Out1                | Adjust to correspond to input 1                                                                                                                                                                  |                                  |                                                                                                                                                                |         | L3     |
| to                  |                                                                                                                                                                                                  |                                  |                                                                                                                                                                |         |        |
| In14                | Adjust to the last break point                                                                                                                                                                   |                                  |                                                                                                                                                                |         | L3 R/O |
| Out14               | Adjust to correspond to input 14                                                                                                                                                                 |                                  |                                                                                                                                                                |         | L3     |
| Status              | Status of the block. A value of zero indicates a healthy conversion.                                                                                                                             | Good<br>Bad                      | Within operating limits<br>A bad output may be caused by a<br>bad input signal (perhaps the input is<br>in sensor break) or an output which<br>is out of range |         | R/O    |

Note:

The 16 point linearisation does not force you to use all 16 points. If fewer points are required, then the curve can be terminated by setting the first unwanted value to be below the previous point. If the curve is a continuously decreasing one, then it may be terminated by setting the first unwanted point above the previous one.

Aug-04

Part No HA027988 Issue 3.0

# 18.2 Polynomial

| List Header – Poly |                                                                                                                                                                                                                                                                                                                                                                                                              | Sub-headers: 1 to 2                    |                                                                                                              |         |                 |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------|---------|-----------------|
| Name<br>to select  | Parameter Description                                                                                                                                                                                                                                                                                                                                                                                        | Value                                  | to change                                                                                                    | Default | Access<br>Level |
| Input Lin          | To select the input type.<br>The linearisation type selects which of<br>the instruments linearisation curves is<br>applied to the input signal. The<br>instrument contains a number of<br>thermocouple and RTD linearisations as<br>standard. In addition there are a number<br>of custom linearisations which may be<br>downloaded using iTools to provide<br>linearisations of non-temperature<br>sensors. | J , K, L, R, B,<br>SqRoot              | N, T, S, PL2, C, PT100, Linear,                                                                              | 1       | Conf<br>L3 R/O  |
| Units              | Units of the output                                                                                                                                                                                                                                                                                                                                                                                          | None                                   |                                                                                                              |         | Conf            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                              | AbsTemp                                |                                                                                                              |         | L3 R/O          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                              | V, mV, A, m                            | A,                                                                                                           |         |                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                              | PH, mmHg,  <br>mmWG, inW<br>PPM, %CO2, | psi, Bar, mBar, %RH, %,<br>/G, inWW, Ohms, PSIG, %O2,<br>%CP, %/sec,                                         |         |                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                              | RelTemp                                |                                                                                                              |         |                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                              | mBar/Pa/T                              |                                                                                                              |         |                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                              | sec, min, hrs                          | ,                                                                                                            |         |                 |
| Out Res'n          | Resolution of the output value                                                                                                                                                                                                                                                                                                                                                                               | XXXXX. XXX                             | X.X, XXX.XX, XX.XXX, X.XXXX                                                                                  | XXXXX   | Conf<br>L3 R/O  |
| Input              | Input Value                                                                                                                                                                                                                                                                                                                                                                                                  | Range of the                           | e input wired to                                                                                             |         | L3              |
|                    | The input to the linearisation block                                                                                                                                                                                                                                                                                                                                                                         |                                        |                                                                                                              |         |                 |
| Output             | Output value                                                                                                                                                                                                                                                                                                                                                                                                 | Between Ou                             | t Low and Out High                                                                                           |         | L3 R/O          |
| In High            | Input high scale                                                                                                                                                                                                                                                                                                                                                                                             | In Low to999                           | 999                                                                                                          | 0       | L3              |
| In Low             | Input low scale                                                                                                                                                                                                                                                                                                                                                                                              | -99999 to In                           | High                                                                                                         | 0       | L3              |
| Out High           | Output high scale                                                                                                                                                                                                                                                                                                                                                                                            | Out Low to                             | 99999                                                                                                        | 0       | L3              |
| Out Low            | Output low scale                                                                                                                                                                                                                                                                                                                                                                                             | -99999 to O                            | ut High                                                                                                      | 0       | L3              |
| Fall Type          | Fallback Type<br>The fallback strategy will come into<br>effect if the status of the input value is<br>bad or if the input value is outside the                                                                                                                                                                                                                                                              | Clip Bad                               | If the input is outside a<br>limit the output will be<br>clipped to the limit and the<br>status will be BAD  |         | Conf            |
|                    | range of input high scale and input low<br>scale. In this case the fallback strategy<br>may be configured as:                                                                                                                                                                                                                                                                                                | Clip Good                              | If the input is outside a<br>limit the output will be<br>clipped to the limit and the<br>status will be GOOD |         |                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                              | Fall Bad                               | The output value will be<br>the fallback value and the<br>output status will be BAD                          |         |                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                              | Fall Good                              | The output value will be<br>the fallback value and the<br>output status will be<br>GOOD                      |         |                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                              | Upscale                                | The output value will be<br>output high scale and the<br>output status will be BAD                           |         |                 |

Part No HA027988 Issue 3.0 Aug-04



|            |                                                                | DownScale | The output value will be<br>the output low scale and<br>the output status will be<br>BAD |        |
|------------|----------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------|--------|
| Fall Value | Value to be adopted by the output in the event of Status = Bad |           |                                                                                          | L3     |
| Status     | Indicates the status of the linearised output:                 | Good      | Good indicates the value is<br>within range and the input<br>is not in sensor break.     | L3 R/O |
|            |                                                                | Bad       | Indicates the Value is out<br>of range or the input is in<br>sensor break.               |        |
|            |                                                                |           | Note: This is also effected<br>by the configured fallback<br>strategy                    |        |

Aug-04

Part No HA027988 Issue 3.0

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

# 19. CHAPTER 19 LOAD

The load simulation block provides styles of load which can be used to allow an instrument configuration to be tested before connection to the process plant. In the current issue of firmware the simulated loads available are Oven and Furnace.

# **19.1 Input Linearisation Parameters**

| List Header – Load     |                                                                                                                                                                                                                                                                                             | Sub-headers: None |                                                                                                                   |         |        |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------|---------|--------|
| Name                   | Parameter Description                                                                                                                                                                                                                                                                       | Value             |                                                                                                                   | Default | Access |
| to select              |                                                                                                                                                                                                                                                                                             | Or C              | to change                                                                                                         |         | Level  |
| Туре                   | The type of load simulation to use. Oven is a simple load of 3 first order lags, providing a single process value for connection to the control loop. Furnace consists of 12 interactive first order lags giving a slave PV, followed by 6 interactive first order lags giving a master PV. | Oven<br>Furnace   | Simulates the<br>characteristics of a<br>typical oven<br>Simulates the<br>characteristics of a<br>typical furnace | Oven    | Conf   |
| Res'n                  | The display resolution of the resultant PV Out.                                                                                                                                                                                                                                             |                   |                                                                                                                   |         | Conf   |
| Units                  | The Units of the resultant PV.                                                                                                                                                                                                                                                              |                   |                                                                                                                   |         | Conf   |
| Gain                   | The gain of the load, the input power is multiplied by gain, before use by the load.                                                                                                                                                                                                        |                   |                                                                                                                   |         | L3     |
| TC1                    | The time constant of lag 1 in the Oven load<br>and slave lags (1-12) of the Furnace load. The<br>time constant has units of seconds.                                                                                                                                                        |                   |                                                                                                                   |         | L3     |
| TC2                    | The time constant of lag 2/3 of the Oven load and master lags (13-18) of the furnace load.                                                                                                                                                                                                  |                   |                                                                                                                   |         | L3     |
| Atten                  | Attenuation Between PV1 and PV2 Stages.                                                                                                                                                                                                                                                     |                   |                                                                                                                   |         | L3     |
| (Furnace load<br>only) | Used in the advanced furnace load and defines an attenuation factor between the slave and master lags                                                                                                                                                                                       |                   |                                                                                                                   |         |        |
| Ch 2 Gain              | Defines the relative gain when cooling is requested, applied to the input power when the power requested is < 0.                                                                                                                                                                            |                   |                                                                                                                   |         | L3     |
| PVFault                | The load function block provides 2 PV                                                                                                                                                                                                                                                       | None              | No fault conditions.                                                                                              |         | L3     |
|                        | a fault condition on these PV's such that the                                                                                                                                                                                                                                               | PVOut1            | Fault on the first output (slave).                                                                                |         |        |
|                        | consumed by another block such as the loop.<br>The sensor fault can be confiured as:                                                                                                                                                                                                        | PVOut2            | Fault on the second output (master).                                                                              |         |        |
|                        |                                                                                                                                                                                                                                                                                             | Both              | A fault on first and second outputs (master and slave).                                                           |         |        |
| PV Out1                | First Process Value                                                                                                                                                                                                                                                                         |                   |                                                                                                                   |         | L3 R/O |
|                        | The PV in Process Value an Oven load or the Slave PV in a furnace load.                                                                                                                                                                                                                     |                   |                                                                                                                   |         |        |
| PV Out2                | Second Process Value                                                                                                                                                                                                                                                                        |                   |                                                                                                                   |         | L3 R/O |
| (Furnace load<br>only) | Second process value, lagged from PVOut1,<br>used as a cascade master input. The Master<br>PV in the Furnace load.                                                                                                                                                                          |                   |                                                                                                                   |         |        |



Aug-04

Part No HA027988 Issue 3.0

| LoopOP CH1 | Loop output channel 1 input.                                                                                                                           |               |                                                        |     | L3 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------|-----|----|
|            | The output of the loop as wired to the load                                                                                                            |               |                                                        |     |    |
|            | load. This can be used as the heat demand.                                                                                                             |               |                                                        |     |    |
| LoopOP CH2 | Loop output channel 2 input.                                                                                                                           |               |                                                        |     | L3 |
|            | The output of the loop as wired to the load                                                                                                            |               |                                                        |     |    |
|            | load. This can be used as the cool demand.                                                                                                             |               |                                                        |     |    |
| Noise      | Noise Added to PV                                                                                                                                      | Off           | The amount of noise is specified in engineering units. | Off | L3 |
|            | This is used to make the PV of the load appear noisy, and hence more like a real measurement.                                                          | 1 to<br>99999 |                                                        |     |    |
| Offset     | Process offset                                                                                                                                         |               |                                                        |     | L3 |
|            | Used to configure an offset in the process. In<br>a temperature application this could<br>represent the ambient operating temperature<br>of the plant. |               |                                                        |     |    |

Part No HA027988 Issue 3.0 Aug-04



# 20. CHAPTER 20 CONTROL LOOP SET UP

Software version 1 contains one loop of control. It contains two outputs, Channel 1 and Channel 2, each of which can be configured for PID, On/Off or Valve Position (bounded or unbounded).

The control function block is divided into a number of sections the parameters of which are all listed under the page header **'Lp'**.

The 'Lp' page contains sub-headers for each section as shown diagrammatically below.

# 20.1 What is a Control Loop?

An example of a heat only temperature control loop is shown below:-



### Figure 20-1: Single Loop Single Channel

The actual temperature measured at the process (PV) is connected to the input of the controller. This is compared with a setpoint (or required) temperature (SP). If there is an error between the set and measured temperature the controller calculates an output value to call for heating or cooling. The calculation depends on the process being controlled but normally uses a PID algorithm. The output(s) from the controller are connected to devices on the plant which cause the heating (or cooling) demand to be adjusted which in turn is detected by the temperature sensor. This is referred to as the control loop.



156.

# 20.2 Loop Parameters - Main

These parameters provide an overview of the loop.

| List Header – Lp  |                                                                                                                                                                                                                                                         | Sub-header: Main        |                                                                                                 |         |                 |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------|---------|-----------------|
| Name<br>To select | Parameter Description                                                                                                                                                                                                                                   | Value                   | D to change                                                                                     | Default | Access<br>Level |
| AutoMan           | To select Auto or Manual operation.<br>This is in addition to the A/MAN<br>button.                                                                                                                                                                      | Auto<br>Man             | Automatic (closed loop)<br>operation<br>Manual (output power adjusted<br>by the user) operation | Auto    | L3              |
| PV                | The process variable input value. This is typically wired from an analog input.                                                                                                                                                                         | Range of t              | he input source                                                                                 |         | L3              |
| Inhibit           | Used to stop the loop controlling. If<br>enabled the loop will stop control and<br>the output of the loop will be set to<br>the safe output value. On exit from<br>inhibit the transfer will be bumpless.<br>This may be wired to an external<br>source | No<br>Yes               | Inhibit disabled<br>Inhibit enabled                                                             | No      | L3              |
| Target SP         | The value of setpoint at which the<br>control loop is aiming. It may come<br>from a number of different sources,<br>such as internal SP and remote SP.                                                                                                  | Between s               | Between setpoint limits                                                                         |         | L3              |
| WSP               | The current value of the setpoint being<br>used by the control loop. It may come<br>from a number of different sources,<br>such as internal SP and Remote SP.<br>The working setpoint is always read-<br>only as it is derived from other sources.      | Between setpoint limits |                                                                                                 |         | R/O             |
| Work OP           | The actual output of the loop before it is split into the channel 1 and channel 2 outputs.                                                                                                                                                              |                         |                                                                                                 |         | R/O             |
| IntHold           | Stop integral action                                                                                                                                                                                                                                    | No<br>Yes               | Integral hold disabled<br>Integral hold enabled                                                 | No      | L3              |

# 20.3 Loop Set up

These parameters configure the type of control.

| List Header – Lp  |                                                                                                                                                                                             | Sub-header: Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      |         |                 |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------|-----------------|
| Name<br>to select | Parameter Description                                                                                                                                                                       | Value In the or the |                                                                                                                      | Default | Access<br>Level |
| Ch1 Control       | Selects the channel 1 control<br>algorithm. Different algorithms may be<br>selected for channels 1 and 2. In<br>temperature control applications, Ch1<br>is usually heating, Ch2 is cooling | Off<br>OnOff<br>PID<br>VPU<br>VPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Channel turned off<br>On/off control<br>3 term or PID control<br>Valve position unbounded<br>Valve position bounded  |         | Conf<br>L3 R/O  |
| Ch2 Control       | Control type for channel 2                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      |         |                 |
| Control Act       | Control Action                                                                                                                                                                              | Rev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reverse acting. The output<br>increases when the PV is below SP.<br>This is the best setting for heating<br>control. |         | Conf<br>L3 R/O  |
|                   |                                                                                                                                                                                             | Dir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Direct acting. The output increases<br>when the PV is above SP. This is<br>the best setting for cooling control      |         |                 |

Part No HA027988 Issue 3.0



Aug-04

| PB Units                                                                                            | Proportional band units.                                                                                  | Eng         | Engineering units eg C or F                                                                                                    |    | Conf           |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------|----|----------------|
|                                                                                                     | See also section 20.4.1.                                                                                  | Percen<br>t | Per cent of loop span (Range Hi -<br>Range Lo)                                                                                 |    | L3 R/O         |
| Deriv Type                                                                                          | Selects whether the derivative acts only<br>on PV changes or on Error (either PV<br>or Setpoint changes). | PV<br>Error | Only changes in PV cause changes<br>to the derivative output.<br>Changes to either PV or SP will<br>cause a derivative output. | PV | Conf<br>L3 R/O |
| The above two parameters do not appear if either Ch1 or Ch2 are configured for Off or OnOff control |                                                                                                           |             |                                                                                                                                |    |                |

Ine abov parameters do not appear if either Ch1 of

#### 20.3.1 Types of Control Loop

### **On/Off Control**

On/Off control simply turns heating power on when the PV is below setpoint and off when it is above setpoint. If cooling is used, cooling power is turned on when the PV is above setpoint and off when it is below. The outputs of such a controller will normally be connected to relays – hysteresis may be set as described in the Alarms section to prevent relay chatter or to provide a delay in the control output action.

### **PID Control**

PID control, also referred to as 'Three Term Control', is a technique used to achieve stable straight line control at the required setpoint. The three terms are:

- Ρ Proportional band
- L Integral time
- D Derivative time

The output from the controller is the sum of the contributions from these three terms. The combined output is a function of the magnitude and duration of the error signal, and the rate of change of the process value. It is possible to turn off integral and derivative terms and control on only proportional, proportional plus integral or proportional plus derivative.

### **Motorised Valve Control**

This algorithm is designed specifically for positioning motorised valves. It operates in boundless or bounded mode.

Boundless VP control (VPU) does not require a position feedback potentiometer for control purposes.

Bounded VP (VPB) control requires a feedback potentiometer as part of the control algorithm.

Note, however that a potentiometer may be used with boundless mode but it is used solely for indication of the valve position and is not used as part of the control algorithm. The control is performed by delivering a 'raise' pulse, a 'lower' pulse or no pulse in response to the control demand signal via relay or triac outputs.

### Motorised Valve Control in Manual mode

Bounded VP controls in manual mode by the fact that the inner positional loop is still running against the potentiometer feedback, so it is operating as a position loop.

In boundless mode the algorithm is a velocity mode positioner. When manual is selected the model predicts where the valve will move to based on the edit of the manual power. Effectively, when the raise or lower key is pressed, +100% or -100% velocity is put into the model for the duration of the key press and the raise or lower output is turned on. If the travel time for the valve is set correctly, the position indicated on the controller will fairly accurately match the actual valve position.

If any drift occurs in the model, it is reset at 100% and 0 and the valve driven back to the end stop, so it resets.

This technique makes boundless VP look like a positional loop in manual even though it is not. This enables combinations of heating and cooling e.g. PID heat, VPU cool and have the manual mode work as expected.



Aug-04

Part No HA027988 Issue 3.0

# 20.4 PID Control

The PID controller consists of the following parameters:-

| Parameter                   | Meaning or Function                                                                                                                                                                                                |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proportional<br>Band 'PB'   | The proportional term, in display units or %, delivers an output which is proportional to the size of the error signal.                                                                                            |
| Integral Time 'Ti'          | Removes steady state control offsets by ramping the output up or down in proportion to the amplitude and duration of the error signal.                                                                             |
| Derivative Time<br>'Td'     | Determines how strongly the controller will react to the rate of change in the measured value. It is used to prevent overshoot and undershoot and to restore the PV rapidly if there is a sudden change in demand. |
| High Cutback<br>'CBH'       | The number of display units, above setpoint, at which the controller will increase the output power, in order to prevent undershoot on cool down.                                                                  |
| Low Cutback<br>'CBL'        | The number of display units, below setpoint, at which the controller will cutback the output power, in order to prevent overshoot on heat up.                                                                      |
| Relative Cool<br>Gain 'R2G' | Only present if cooling has been configured. Sets the cooling proportional band, which equals the heat proportional band value divided by the cool gain value.                                                     |

## 20.4.1 Proportional Term

The proportional term delivers an output which is proportional to the size of the error signal. An example of this is shown below, for a temperature control loop, where the proportional band is  $10^{\circ}$ C and an error of  $3^{\circ}$ C will produce an output of 30%.



Figure 20-2: Proportional Action

Proportional only controllers will, in general, provide stable straight line control, but with an offset corresponding to the point at which the output power equals the heat loss from the system.

The proportional term may be set in engineering units, as shown in the above example, or as a percentage of the controller range. In the above example, if the input range is 0 to 1000°C the proportional band is set to 1%.

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

#### 20.4.2 Integral Term

The integral term removes steady state control offset by ramping the output up or down in proportion to the amplitude and duration of the error signal. The ramp rate (reset rate) is the integral time constant, and must be longer than the time constant of the process to avoid oscillations.

#### 20.4.3 **Derivative Term**

The derivative term is proportional to the rate of change of the temperature or process value. It is used to prevent overshoot and undershoot of the setpoint by introducing an anticipatory action. The derivative term has another beneficial effect. If the process value falls rapidly, due, for example, an oven door being opened during operation, and a wide proportional band is set the response of a PI controller can be quite slow. The derivative term modifies the proportional band according to this rate of change having the effect of narrowing the proportional band. Derivative action, therefore, improves the recovery time of a process automatically when the process value changes rapidly.

Derivative can be calculated on change of PV or change of Error. For applications such as furnace control, it is common practice to select Derivative on PV to prevent thermal shock caused by a sudden change of output following a change in setpoint.

#### 20.4.4 **High and Low Cutback**

While the PID parameters are optimised for steady state control at or near the setpoint, high and low cutback parameters are used to reduce overshoot and undershoot for large step changes in the process. They respectively set the number of degrees above and below setpoint at which the controller will start to increase or cutback the output power.



### Figure 20-3: High and Low Cutback

#### 20.4.5 Integral action and manual reset

In a full three-term controller (that is, a PID controller), the integral term automatically removes steady state errors from the setpoint. If the controller is set as a PD controller, the integral term will be set to 'OFF'. Under these conditions the measured value may not settle precisely at setpoint. The Manual Reset parameter (MR) represents the value of the power output that will be delivered when the error is zero. You must set this value manually in order to remove the steady state error.

#### 20.4.6 **Relative Cool Gain**

The gain of channel 2 control output, relative to the channel 1 control output.

Relative Ch2 Gain compensates for the different quantities of energy needed to heat, as opposed to that needed to cool, a process. For example: water cooling applications might require a relative cool gain of 4 (cooling is 4 times faster than the heat-up process).

(This parameter is set automatically when Autotune is used). A nominal setting of around 4 is often used.



160.

## 20.4.7 Loop Break Time

The loop is considered to be broken if the PV does not respond to a change in the output. Since the time of response will vary from process to process the Loop Break Time parameter allows a time to be set before a loop break alarm is initiated. In these circumstances the output power will drive to high or low limit. For a PID controller, if the PV has not moved by  $0.5 \times Pb$  in the loop break time the loop is considered to be in break. The loop break time is set by the Autoune, a typical value is  $12 \times Td$ .

For an On/Off controller LBT loop break detection is also based on loop break time as 0.1\*SPAN where SPAN = Range High – Range Low. Therefore, if the output is at limit and the PV has not moved by 0.1\*SPAN in the loop break time a loop break will occur.

## 20.4.8 Cooling Algorithm

The method of cooling may vary from application to application.

For example, an extruder barrel may be cooled by forced air (from a fan), or by circulating water or oil around a jacket. The cooling effect will be different depending on the method. The cooling algorithm may be set to linear where the controller output changes linearly with the PID demand signal, or it may be set to water, oil or fan where the output changes non-linearly against the PID demand. The algorithm provides optimum performance for these methods of cooling.

### 20.4.9 Gain Scheduling

Gain scheduling is the automatic transfer of control between one set of PID values and another. It may be used in very non-linear systems where the control process exhibits large changes in response time or sensitivity, see diagram below. This may occur, for example, over a wide range of PV, or between heating or cooling where the rates of response may be significantly different. The number of sets depends on the non-linearity of the system. Each PID set is chosen to operate over a limited (approximately linear) range.

In the 3500 controller, this is done at a pre-settable strategy defined by the parameter 'Sched Type'. The choices are:

| Set        | The PID set can be selected manually or from a digital input                                                     |
|------------|------------------------------------------------------------------------------------------------------------------|
| SP         | The transfer between one set and the next depends on the value of the SP                                         |
| PV         | The transfer between one set and the next depends on the value of the PV                                         |
| Error      | The transfer between one set and the next depends on the value of the error                                      |
| OP         | The transfer between one set and the next depends on the value of the OP demand                                  |
| Rem        | The transfer between one set and the next depends on the value from a remote source for example, a digital input |
| Soft Wired | To a parameter chosen by the user.                                                                               |

The 3500 controller has three sets of PID values – the maximum number which you may wish to use is set by 'Num Sets' parameter.



Figure 20-4: Gain Scheduling in a Non-Linear System

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

# 20.4.10 PID Parameters

| List Header – Lp   |                                                                                                  | Sub-header: PID                              |                                   |         |        |  |
|--------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|---------|--------|--|
| Name               | Parameter Description                                                                            | Value                                        | 5                                 | Default | Access |  |
| to select          |                                                                                                  | or O                                         | to change                         |         | Level  |  |
| Sched Type         | To choose the type of gain scheduling                                                            | Off<br>Set<br>SP<br>PV<br>Error<br>OP<br>Rem | See above for explanation         | Off     | L3     |  |
| Num Sets<br>Note 1 | Selects the number of PID sets to present.                                                       | 1 to 3                                       |                                   | 1       | L3     |  |
|                    | Allows the lists to be reduced if<br>the process does not require the<br>full range of PID sets. |                                              |                                   |         |        |  |
| Active Set         | Currently working set                                                                            | Set1                                         |                                   | Set1    | R/O    |  |
| Note 1             |                                                                                                  | Set2<br>Set3                                 |                                   |         |        |  |
| Boundary 1-2       | Sets the level at which PID set 1                                                                | Range units                                  |                                   |         | L3     |  |
| Note 1             | changes to PID set 2                                                                             | The 'Bound                                   | dary' parameter only applies when |         |        |  |
| Boundary 3-4       | Sets the level at which PID set 2                                                                | Sched Typ                                    | e – Sr, rv, Eliol, Or ol Relli    |         |        |  |
| Note 1             | changes to PID set 3                                                                             |                                              |                                   |         |        |  |
| PB/PB2/PB3         | Proportional band Set1/Set2/Set3                                                                 | 0 to 99999                                   | ) Eng units                       | 300     | L3     |  |
| Ti/Ti2/Ti3         | Integral term Set1/Set2/Set3                                                                     |                                              |                                   |         | L3     |  |
| Td/Td2/Td3         | Derivative term Set1/Set2/Set3                                                                   |                                              |                                   |         | L3     |  |
| R2G/R2G2/          | Relative cool gain Set1/Set2/Set3                                                                |                                              |                                   |         | L3     |  |
| R2G3               |                                                                                                  |                                              |                                   |         |        |  |
| CBH/CBH2/          | Cutback high Set1/Set2/Set3                                                                      |                                              |                                   |         | L3     |  |
| СВНЗ               |                                                                                                  |                                              |                                   |         |        |  |
| CBL/CBL2/          | Cutback low Set1/Set2/Set3                                                                       |                                              |                                   |         | L3     |  |
| CBL3               |                                                                                                  |                                              |                                   |         |        |  |
| MR/MR2/MR3         | Manual reset Set1/Set2/Set3.                                                                     |                                              |                                   | 0.0     | L3     |  |
|                    | This must be set to 0.0 when the integral term is set to a value                                 |                                              |                                   |         |        |  |
| LBT/LBT2/LBT3      | Loop break time Set1/Set2/Set3                                                                   | Off or 1<br>to 99999                         | Seconds                           | 100     | L3     |  |

If the control type is set to On/Off, only LBT is shown in the PID list.

Note 1:

These parameters only appear if 'Sched Type'  $\neq$  'Off'.

Aug-04

Part No HA027988 Issue 3.0

## 20.5 Tuning

In tuning, you match the characteristics (PID parameters) of the controller to those of the process being controlled in order to obtain good control. Good control means:

Stable, 'straight-line' control of the PV at setpoint without fluctuation

No overshoot, or undershoot, of the PV setpoint

Quick response to deviations from the setpoint caused by external disturbances, thereby rapidly restoring the PV to the setpoint value.

Tuning involves calculating and setting the value of the parameters listed in the above table.

#### 20.5.1 **Automatic Tuning**

This controller uses a one-shot tuner which automatically sets up the initial values of the parameters listed in the table on the previous page.

#### 20.5.2 One-shot Tuning

The 'one-shot' tuner works by switching the output on and off to induce an oscillation in the measured value. From the amplitude and period of the oscillation, it calculates the tuning parameter values.

If the process cannot tolerate full heating or cooling being applied, then the levels can be restricted by setting the high power limit ('Output Hi') and low power limit ('Output Lo'). However, the measured value must oscillate to some degree for the tuner to be able to calculate values.

A One-shot Tune can be performed at any time, but normally it is performed only once during the initial commissioning of the process. However, if the process under control subsequently becomes unstable (because its characteristics have changed), you can re-tune again for the new conditions.

It is best to start tuning with the process at ambient conditions and with the SP close to the normal operating level. This allows the tuner to calculate more accurately the low cutback and high cutback values which restrict the amount of overshoot, or undershoot.

### Typical automatic tuning cycle



Autotune starts 1 minute after being turned on to determine steady state conditions.

Tuning normally takes place at a PV which has a value of setpoint x 0.7.

The power is automatically turned on and off to cause oscillations. From the results the values shown in the table are calculated

#### 20.5.3 Calculation of the cutback values

Low cutback and High cutback are values that restrict the amount of overshoot, or undershoot, that occurs during large step changes in PV (for example, under start-up conditions).

If either low cutback, or high cutback, is set to 'Auto' the values are fixed at three times the proportional band, and are not changed during automatic tuning.

To tune the cutback values, first set them to values other than Auto, then perform a tune as usual.

Part No HA027988 Issue 3.0 Aug-04



#### 20.5.4 Manual Tuning

If for any reason automatic tuning gives unsatisfactory results, you can tune the controller manually. There are a number of standard methods for manual tuning. The one described here is the Ziegler-Nichols method.

With the process at its normal running conditions:

Set the Integral Time and the Derivative Time to OFF.

Set High Cutback and Low Cutback to 'Auto'.

Ignore the fact that the PV may not settle precisely at the setpoint.

If the PV is stable, reduce the proportional band so that the PV just starts to oscillate. If PV is already oscillating, increase the proportional band until it just stops oscillating. Allow enough time between each adjustment for the loop to stabilise. Make a note of the proportional band value 'PB' and the period of oscillation 'T'.

Set the proportional band, integral time and derivative time parameter values according to the calculations given in the table below:-

| Type of control   | Proportional band<br>(PB) | Integral time (Ti)<br>seconds | Derivative time<br>(Td) seconds |
|-------------------|---------------------------|-------------------------------|---------------------------------|
| Proportional only | 2xPB                      | OFF                           | OFF                             |
| P + I control     | 2.2xPB                    | 0.8xT                         | OFF                             |
| P + I + D control | 1.7xPB                    | 0.5xT                         | 0.12xT                          |

#### 20.5.5 Setting the Cutback Values

The above procedure sets up the parameters for optimum steady state control. If unacceptable levels of overshoot or undershoot occur during start-up, or for large step changes in PV, then manually set the cutback parameters.

Proceed as follows:

Set the low and high cutback values to three proportional bandwidths (that is to say, 'CBH'= 'CBL' = 3 x PB).

Note the level of overshoot, or undershoot, that occurs for large PV changes (see the diagrams below).

In example (a) decrease Low Cutback by the undershoot value. In example (b) increase Low Cutback by the overshoot value.

Example (a)

Example (b)



Where the PV approaches setpoint from above, you can set High Cutback in a similar manner.



164.

#### 20.5.6 **Tune Parameters**

| List Header – Lp  |                                                                                                                                | Sub-header: Tune             |                        |       |                 |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|-------|-----------------|--|
| Name<br>to select | Parameter Description                                                                                                          | Value                        | Value<br>or  to change |       | Access<br>Level |  |
| Enable            | To start self tuning                                                                                                           | Off                          | Stop                   | Stop  | L3              |  |
|                   |                                                                                                                                | On                           | Start                  |       |                 |  |
| High Output       | Set this to limit the maximum<br>output power level which the<br>controller will supply during the<br>tuning process.          | Between Low Output and 100.0 |                        | !00.0 | L3              |  |
|                   | If the high output power limit set<br>in the output list is lower the<br>autotune high limit will be<br>clipped to this value. |                              |                        |       |                 |  |
| Low Output        | Set this to limit the minimum %<br>output power level which the<br>controller will supply during the<br>tuning process.        | Between High Output and 0.0  |                        | 0.0   | L3              |  |
|                   | If the low output power limit set<br>in the output list is higher the<br>autotune low limit will be clipped<br>to this value.  |                              |                        |       |                 |  |
| State             | Shows if self tuning is in progress                                                                                            | OFF                          |                        |       | R/O             |  |
| Stage             | Shows the progress of the self tuning                                                                                          | Reset                        |                        |       | R/O             |  |
| Stage Time        | Time in the particular stage                                                                                                   |                              |                        |       | R/O             |  |

Part No HA027988 Issue 3.0 Aug-04



# 20.6 Setpoint Function Block

The controller setpoint is the **Working Setpoint** which may be sourced from a number of alternatives. This is the value ultimately used to control the process variable in a loop.

The working setpoint may be derived from:-

- 1. SP1 or SP2, both of which are manually set by the user and can be switched into use by an external signal or through the user interface.
- 2. From an external (remote) analogue source
- 3. The output of a programmer function block and will, therefore, vary in accordance with the program in use.

The setpoint function block also provides the facility to limit the rate of change of the setpoint before it is applied to the control algorithm. It will also provide upper and lower limits. These are defined as setpoint limits for the local setpoints and instrument range high and low for other setpoint sources. All setpoints are ultimately subject to a limit of range hi and range lo.

User configurable methods for tracking are available, such that the transfer between setpoints and between operational modes will not cause a bump in the setpoint.



# 20.6.1 Setpoint Function Block





Issue 3.0

Aug-04

Part No HA027988

166.

#### 20.6.2 SP Tracking

When setpoint tracking is enabled and the local setpoint is selected, the local setpoint is copied to 'TrackSP'. Tracking now ensures that the alternate SP follows or tracks this value. When the alternate setpoint is selected it initially takes on the tracked value thus ensuring that no bump takes place. The new setpoint is then adopted gradually. A similar action takes place when returning to the local setpoint.

#### 20.6.3 Manual Tracking

When the controller is operating in manual mode the currently selected SP tracks the PV. When the controller resumes automatic control there will be no step change in the resolved SP.

#### 20.6.4 **Rate Limit**

Rate limit will control the rate of change of setpoint. It is enabled by the 'Rate' parameter. If this is set to Off then any change made to the setpoint will be effective immediately. If it is set to a value then any change in the setpoint will be effected at the value set in units per minute. Rate limit also acts on SP2 and when switching between SP1 and SP2.

When rate limit is active the 'RateDone' parameter will display 'No'. When the setpoint has been reached this parameter will change to 'Yes'.

When 'Rate' is set to a value (other than Off) an additional parameter 'SPRate Disable' is displayed which allows the setpoint rate limit to be turned off and on without the need to adjust the 'Rate' parameter between Off and a value.

| List Header – Lp     |                                                                                                                                    | Sub-header: SP                    |                                                               |         |                 |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------|---------|-----------------|
| Name<br>to select    | Parameter Description                                                                                                              | Value                             | To change                                                     | Default | Access<br>Level |
| Range Hi<br>Range Lo | The Range limits provide a set of absolute<br>maximums and minimums for setpoints<br>within the control loop.                      | Full rang                         | Full range of the input type                                  |         | Conf<br>Conf    |
|                      | Any derived setpoints are ultimately<br>clipped to be within the Range limits.                                                     |                                   |                                                               |         |                 |
|                      | If the Proportional Band is configured as % of Span, the span is derived from the Range limits.                                    |                                   |                                                               |         |                 |
| SP Select            | Select local or alternate setpoint                                                                                                 | SP1<br>SP2                        | Setpoint 1<br>Setpoint 2                                      | SP1     | L3              |
| SP1                  | Primary setpoint for the controller                                                                                                | Between SP high and SP low limits |                                                               |         | L3              |
| SP2                  | Setpoint 2 is the secondary setpoint of the controller. It is often used as a standby setpoint.                                    |                                   |                                                               |         | L3              |
| SP HighLim           | Maximum limit allowed for the local setpoints                                                                                      | Between Range Hi and Range Lo     |                                                               |         | L3              |
| SP LowLim            | Minimum limit allowed for the local setpoints                                                                                      |                                   |                                                               |         | L3              |
| Alt SP En            | To enable the alternative setpoint to be<br>used. This may be wired to a source such<br>as the programmer Run input.<br>See note 1 | No<br>Yes                         | Alternative setpoint disabled<br>Alternative setpoint enabled |         | L3              |
| Alt SP               | This may be wired to an alternative source<br>such as the programmer or remote<br>setpoint                                         |                                   | •                                                             |         | L3              |
|                      | see note I                                                                                                                         |                                   |                                                               |         |                 |

#### 20.6.5 **Setpoint Parameters**

Part No HA027988 Issue 3.0 Aug-04



| Rate           | Limits the maximum rate at which the working setpoint can change.                                                                                                                                                                                  | Off or 0.<br>per mini | Off or 0.1 to 9999.9 engineering units per minute       |  | L3     |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------|--|--------|
|                | The rate limit may be used to protect the load from thermal shock which may be caused by large step changes in setpoint.                                                                                                                           |                       |                                                         |  |        |
| RateDone       | Flag which indicates when the setpoint is changing or completed                                                                                                                                                                                    | No<br>Yes             | Setpoint changing<br>Complete                           |  | R/O    |
| SPRate Disable | Setpoint rate disable                                                                                                                                                                                                                              | No<br>Yes             | Enabled<br>Disabled                                     |  | L3     |
| SP Trim        | Trim is an offset added to the setpoint.<br>The trim may be either positive or negative,<br>the range of the trim may be restricted by<br>the trim limits                                                                                          | Between               | SP Trim Hi and SP Trim Lo                               |  | L3     |
|                | Setpoint trims may be used in a<br>retransmission system. A master zone may<br>retransmit the setpoint to the other zones,<br>a local trim may be applied to each zone to<br>produce a profile along the length of the<br>machine                  |                       |                                                         |  |        |
| SP Trim Hi     | Setpoint trim high limit                                                                                                                                                                                                                           |                       |                                                         |  | L3     |
| SP Trim Lo     | Setpoint trim low limit                                                                                                                                                                                                                            |                       |                                                         |  | L3     |
| Man Track      | To enable manual tracking. When the loop<br>is switched from Manual to Auto, the<br>Setpoint is set to the current PV. This is<br>useful if the load is started in Manual<br>Mode, then later switched to Auto to<br>maintain the operating point. | Off<br>On             | Manual tracking disabled<br>Manual tracking enabled     |  | L3 R/O |
| SP Track       | Setpoint tracking ensures bumpless transfer<br>in setpoint when switching between a local<br>and an alternate setpoint such as the<br>programmer.                                                                                                  | Off<br>On             | Setpoint tracking disabled<br>Setpoint tracking enabled |  | Conf   |
|                | This enables the tracking interface<br>provided by TrackPV and TrackVal, which is<br>used by the programmer and other<br>setpoint providers external to the control<br>loop                                                                        |                       |                                                         |  |        |
| Track PV       | The programmer tracks the PV when it is servoing or tracking.                                                                                                                                                                                      |                       |                                                         |  | L3 R/O |
| Track SP       | Manual Tracking Value.<br>The SP to track for manual tracking.                                                                                                                                                                                     |                       |                                                         |  | L3 R/O |

Note 1:-

Connections to the programmer are made automatically when the loop and programmer are enabled and there are no existing connections to these parameters.

168.

E-mail:hvssystem@hvssystem.com

Site web : www.hvssystem.com

Part No HA027988 Issue 3.0

# 20.7 Output Function Block

The output function block allows you to set up output conditions from the control block, such as output limits, hysteresis, output feedforward, behaviour in sensor break, etc.

| List Header – Lp                                                                                           |                                                                                                                                                                                                                                  | Sub-header: OP                              |             |                 |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------|-----------------|--|
| Name<br>to select                                                                                          | Parameter Description                                                                                                                                                                                                            | Value<br>or To change                       | Default     | Access<br>Level |  |
| Output Hi                                                                                                  | Maximum output power delivered by channels 1 and 2.                                                                                                                                                                              | Between Output Lo and 100.0%                | 100.0       | L3              |  |
|                                                                                                            | By reducing the high power limit, it is<br>possible to reduce the rate of change of<br>the process, however, care should be taken<br>as reducing the power limit will reduce the<br>controllers ability to react to disturbance. |                                             |             |                 |  |
| Output Lo                                                                                                  | Minimum (or maximum negative) output power delivered by channels 1 and 2                                                                                                                                                         | Between Output Hi and -100.0%               | -100.0      | L3              |  |
| Ch1 Output                                                                                                 | Channel 1 (Heat) output.                                                                                                                                                                                                         | Between output Hi and Output Lo             |             | L3 R/O          |  |
|                                                                                                            | The Ch1 output is the positive power<br>values (0 to Output Hi) used by the heat<br>output. Typically this is wired to the control<br>output (time proportioning or DC output).                                                  |                                             |             |                 |  |
| Ch2 Output                                                                                                 | The Ch2 output is negative portion of the control output (0 – Output Lo) for heat/cool applications. It is inverted to be a positive number so that it can be wired into one of the outputs (time proportioning or DC outputs).  | Between output Hi and Output Lo             |             | L3 R/O          |  |
| Ch2 DeadB                                                                                                  | Ch1/Ch2 Deadband is a gap in percent<br>between output 1 going off and output 2<br>coming on and vice versa.                                                                                                                     | Off to 100.0%                               | Off         | L3              |  |
|                                                                                                            | For on/off control this is taken as a percentage of the hysteresis.                                                                                                                                                              |                                             |             |                 |  |
| The following for<br>Setup page)                                                                           | ur parameters only appear if Ch1/2 are configu                                                                                                                                                                                   | red for valve position control (Ch1/2 Contr | ol = VPU/VF | °B in Lp        |  |
| Ch1 TravelT                                                                                                | Valve travel time for the channel 1 valve to travel from 0% (closed) to 100% (open).                                                                                                                                             | 0.0 to 1000.0 seconds                       |             | L3              |  |
|                                                                                                            | In a Valve positioner application, Channel<br>one is connected to both a Raise and a<br>Lower output.                                                                                                                            |                                             |             |                 |  |
|                                                                                                            | In a Heat/Cool application Channel 1 is the heat valve.                                                                                                                                                                          |                                             |             |                 |  |
| Ch2 TravelT                                                                                                | Travel time for Channel 2 valve to travel from 0% (closed) to 100% (open).                                                                                                                                                       | 0.0 to 1000.0 seconds                       |             | L3              |  |
|                                                                                                            | In a Heat/Cool application, Channel 2 is the cool valve.                                                                                                                                                                         |                                             |             |                 |  |
| Nudge Raise                                                                                                | Causes the valve to move by one minimum on time towards the CH1 open.                                                                                                                                                            |                                             |             | L3              |  |
|                                                                                                            | This parameter is provided for so that digital communications can control the valve                                                                                                                                              |                                             |             |                 |  |
| Nudge Lower                                                                                                | Causes the valve to move by one minimum on time towards the CH1 close.                                                                                                                                                           |                                             |             | L3              |  |
| The following pot feedback parameters appear if Ch1/2 are configured for VPB – valve position bounded mode |                                                                                                                                                                                                                                  |                                             |             |                 |  |

Part No HA027988 Issue 3.0



Aug-04

|                   |                                                                                                                                                                                                                                                                                                |                      | -                                                                                                                                                                                |      |      |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| PotCal            | Starts the potentiometer calibration by<br>selecting which potentiometer to calibrate.<br>e.g. if a valve is used to control the cooling<br>of a process, then the ch2 potentiometer<br>must be calibrated.                                                                                    | Off<br>CH1<br>CH2    | Pot cal disabled<br>Calibrate channel 1<br>Calibrate channel 2                                                                                                                   |      | Conf |
|                   | Note: Potentiometer input modules must<br>be fitted and wired directly to the loops<br>Ch1 or Ch2 pot position parameters.                                                                                                                                                                     |                      |                                                                                                                                                                                  |      |      |
|                   | See section 9.4.4 for details on pot calibration                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                  |      |      |
| Ch1 Pot Pos       | The position of the channel 1 actuator as<br>measured by a pot position feedback. This<br>is used by the bounded VP control<br>algorithm as the PV of the positional loop.                                                                                                                     |                      |                                                                                                                                                                                  |      | L3   |
|                   | Note: PotCal can be used to automatically calibrate the potentiometer feedback.                                                                                                                                                                                                                |                      |                                                                                                                                                                                  |      |      |
| Ch1 Pot Brk       | Indicates the Channel 1 pot is broken.                                                                                                                                                                                                                                                         | Off                  |                                                                                                                                                                                  | Off  | L3   |
|                   | This parameter requires that the pot<br>position is wired from an input channel.<br>This value is taken from the wire.                                                                                                                                                                         | On                   |                                                                                                                                                                                  |      |      |
| Ch2 Pot Pos       | The position of the channel 2 actuator as<br>measured by a pot position feedback. This<br>is used by the bounded VP control<br>algorithm as the PV of the positional loop                                                                                                                      |                      |                                                                                                                                                                                  |      | L3   |
| Ch2 Pot Brk       | Indicates the Channel 2 pot is broken. This value is taken from the wire and is provided by the pot input module.                                                                                                                                                                              | Off<br>On            |                                                                                                                                                                                  | Off  | L3   |
| PotBrk Mode       | Defines the action which takes place if the                                                                                                                                                                                                                                                    | Raise                | The valve is opened                                                                                                                                                              |      | L3   |
|                   | feedback potentiometer becomes open                                                                                                                                                                                                                                                            | Lower                | The valve is closed                                                                                                                                                              |      |      |
|                   | An alarm message is given whenever the                                                                                                                                                                                                                                                         | Rest                 | The valve remains in its<br>current position                                                                                                                                     |      |      |
|                   | fault occurs.                                                                                                                                                                                                                                                                                  | Model                | The controller tracks the<br>actual position of the valve<br>and sets up a model of the<br>system so that it continues<br>to control when the<br>potentiometer becomes<br>faulty |      |      |
| Rate              | Limits the rate at which the output from<br>the PID can change in % change per<br>minute. Output rate limit is useful in<br>preventing rapid changes in output from<br>damaging the process or the heater<br>elements.                                                                         | Off to 999<br>minute | 9.9 engineering units per                                                                                                                                                        | Off  | L3   |
| Ch1 OnOff<br>Hyst | Channel hysteresis only shown when channel 1 is configured as OnOff.                                                                                                                                                                                                                           | 0.0 to 200.0         |                                                                                                                                                                                  | 10.0 | L3   |
| Ch2 OnOff<br>Hyst | Hysteresis sets the difference between<br>output on and output off to prevent (relay)<br>chatter.                                                                                                                                                                                              | 0.0 to 200.          | 0                                                                                                                                                                                | 10.0 | L3   |
| Sbrk Mode         | Defines the action taken if the Process<br>Variable is bad, i.e. the sensor has failed.<br>This can be configured as hold, in which<br>case the output of the loop is held at its<br>last good value. Alternately the output can<br>switch to a safe output power defined at<br>configuration. | Safe<br>Hold         | To select the level set by<br>'Safe OP'<br>To hold the current output<br>level at the point when<br>sensor break occurs                                                          | Safe | L3   |

Aug-04

Part No HA027988 Issue 3.0

| Safe OP                        | Sets the output level to be adopted when in a sensor break condition                                                                                                                                                                                                                                                                                                                                                    | Between o                       | output Hi and Output Lo                                                                                                                       |      | L3             |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|
| Man Mode                       | Selects the mode of manual operation.                                                                                                                                                                                                                                                                                                                                                                                   | Track<br>Step                   | In auto the manual output<br>tracks the control output<br>such that a change to<br>manual mode will not<br>result in a bump in the<br>output. |      | L3             |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 | on transition to manual the<br>output will be the manual<br>op value as last set by the<br>operator.                                          |      |                |
| ManOP                          | The output when the loop is in manual.<br>Note: In manual mode the controller will<br>still limit the maximum power to the power<br>limits, however, it could be dangerous if<br>the instrument is left unattended at a high<br>power setting. It is important that the over<br>range alarms are configured to protect<br>your process.<br>We recommend that all processes are fitted<br>with an independent over range | Between output Hi and Output Lo |                                                                                                                                               |      | L3 R/O         |
| PffEn<br>See section<br>20.7.1 | Power feedforward enable. This adjusts the<br>output signal to compensate for changes in<br>voltage to the controller supply                                                                                                                                                                                                                                                                                            | No<br>Yes                       | Disabled<br>Enabled                                                                                                                           |      |                |
| Pwr In                         | Measured power input                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | l                                                                                                                                             |      | L3 R/O         |
| Cool Type                      | Selects the type of cooling channel<br>characterisation to be used. Can be<br>configured as water, oil or fan cooling.                                                                                                                                                                                                                                                                                                  | Linear<br>Oil<br>Water<br>Fan   | These are set to match the type of cooling medium applicable to the process                                                                   |      | Conf L3<br>R/O |
| FF Type                        | Feedforward type                                                                                                                                                                                                                                                                                                                                                                                                        | None                            | No signal fed forward                                                                                                                         | None | Conf           |
|                                | The following four parameters appear if FF<br>Type ≠ None                                                                                                                                                                                                                                                                                                                                                               | Remote                          | A remote signal fed<br>forward                                                                                                                |      |                |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                         | SP                              | Setpoint fed forward                                                                                                                          |      |                |
| FF Gain                        | Defines the gain of the feedforward value,<br>the feed forward value is multiplied by the<br>gain                                                                                                                                                                                                                                                                                                                       | PV                              | PV Ted forward                                                                                                                                |      | Conf           |
| FF Offset                      | Defines the offset of the feedforward value this is added to the scaled feedforward.                                                                                                                                                                                                                                                                                                                                    |                                 |                                                                                                                                               |      | L3             |
| FF Trim Lim                    | Feedforward trim limits the effect of the<br>PID output.<br>Defines symmetrical limits around the PID<br>output, such that this value is applied to<br>the feedforward signal as a trim.                                                                                                                                                                                                                                |                                 |                                                                                                                                               |      | L3             |
| FF OP                          | The calculated Feedforward Value.                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                                                                                                                               |      | L3 R/O         |
| Track OP                       | Value for the loop output to track when OP Track is Enabled.                                                                                                                                                                                                                                                                                                                                                            |                                 |                                                                                                                                               |      |                |
| Track En                       | When enabled, the output of the loop will<br>follow the track output value. The loop<br>will bumplessly return to control when<br>tracking is turned off.                                                                                                                                                                                                                                                               | Off<br>On                       | Disabled<br>Enabled                                                                                                                           |      | L3             |

Part No HA027988 Issue 3.0 Aug-04



| RemOPL | Remote output low limit.                                                                                                           | -100.0 to 100.0 | L3 |
|--------|------------------------------------------------------------------------------------------------------------------------------------|-----------------|----|
|        | Can be used to limit the output of the loop<br>from a remote source or calculation. This<br>must always be within the main limits. |                 |    |
| RemOPH | Remote output high limit                                                                                                           | -100.0 to 100.0 | L3 |

# 20.7.1 Power Feed Forward Enable

Power feedforward is a feature which monitors the line voltage and compensates for fluctuations before they affect the process temperature. This allows the output power to be corrected for fluctuations in the line voltage when using electrical heating. The use of this will give better steady state performance when the line voltage is not stable.

It is mainly used for digital type outputs which drive contactors or solid state relays. It is generally not necessary when analogue thyristor control is used since compensation for power changes is included in the thyristor driver. It should also be disabled for any non-electric heating process.

Consider a process running at 25% power, with zero error and then the line voltage falls by 20%. The heater power would drop by 36% because of the square law dependence of power on voltage. A drop in temperature would result. After a time, the thermocouple and controller would sense this fall and increase the ON-TIME of the contactor just enough to bring the temperature back to set point. Meanwhile the process would be running a bit cooler than optimum which may cause some imperfection in the product.

With power feedforward enabled the line voltage is monitored continuously and ON-TIME increased or decreased to compensate immediately. In this way the process need never suffer a temperature disturbance caused by a line voltage change.

172.

Aug-04

## 20.7.2 Output Limits

The diagram shows where output limits are applied.

### PID List

Including Gain Scheduling output



- Individual output limits may be set in the PID list for each set of PID parameters when gain scheduling is used.
- The parameters 'Sched OPHi' and 'Sched OPHLo', found in the Diagnostics List, may be set to values which override the gain scheduling output values.
- A limit may also be applied from an external source. These are 'RemOPH' and 'RemOPLo' (Remote output high and low) found in the Output List. These parameters are wireable. For example they may be wired to an analogue input module so that a limit may applied through some external strategy. If these parameters are not wired <u>+</u>100% limit is applied every time the instrument is powered up.
- The tightest set (between Remote and PID) is connected to the output where an overall limit is applied using parameters 'Output Hi' and 'Output Lo' settable in Level 3.
- 'Wrk OPHi' and 'Wrk OPHLo' found in the Diagnostics list are read only parameters showing the overall working output limits.
- The tune limits are a separate part of the algorithm and are applied to the output during the tuning process. The overall limits 'Output Hi' and 'Output Lo' always have priority.

Part No HA027988 Issue 3.0 Aug-04



## 20.7.3 Effect of Control Action, Hysteresis and Deadband

For temperature control **'Control Act'** will be set to **'Rev'**. For a PID controller this means that the heater power decreases as the PV increases. For an on/off controller output 1 (usually heat) will be on (100%) when PV is below the setpoint and output 2 (usually cool) will be on when PV is above the setpoint

**Hysteresis** applies to on/off control only. It defines the difference in temperature between the output switching off and switching back on again. The examples below shows the effect in a heat/cool controller.

**Deadband** (**Ch2 DeadB**) can operate on both on/off control or PID control where it has the effect of widening the period when no heating or cooling is applied. However, in PID control its effect is modified by both the integral and derivative terms. Deadband might be used in PID control, for example, where actuators take time to complete their cycle thus ensuring that heating and cooling are not being applied at the same time. Deadband is likely to be used, therefore, in on/off control only. The second example below adds a deadband of 20 to the above example.





2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com

Part No HA027988

Site web : www.hvssystem.com

Issue 3.0

Aug-04

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

# 21. CHAPTER 21 SETPOINT PROGRAMMER

In a setpoint programmer you can set up a profile in the controller in which the setpoint varies in a predetermined way over a period of time. Temperature is a very common application where it is required to 'ramp' the process value from one level to another over a set period of time.

The **Program** is divided into a flexible number of **Segments** - each being a single time duration. The total number of segments available is **200** or **50 per program** and it is possible to store up to **50 separate programs.** 

It is often necessary to switch external devices at particular times during the program. Up to eight digital 'event' outputs can be programmed to operate during those segments.

An example of a program and two event outputs is shown below.



8 X Digital Events

Figure 21-1: A Setpoint Program

Each individual segment can be configured as **Time-to-Target** or **Ramp-Rate**. This allows a single program to use both modes. A program with all segments configured as Time-to-Target is shown below.



Figure 21-2: Time to Target Programmer

A ramp rate programmer specifies it's ramp segments as maximum setpoint changes per time unit. The diagram below demonstrates a ramp rate programmer.





176.

Issue 3.0

Aug-04

Part No HA027988

# 21.1 Programmer Operating States

#### 21.1.1 Reset

In reset the programmer is inactive and the controller behaves as a standard controller. It will:-

- 1. Continue to control with the setpoint determined by the next available source, SP1, SP2, Alternative Setpoint.
- 2. Allow edits to all segments
- 3. Return all controlled outputs to the configured reset state.

#### 21.1.2 Run

In run the programmer working setpoint varies in accordance with the profile set in the active program. A program will always run - non configured programs will default to a single Dwell end segment.

#### 21.1.3 Hold

A programmer may only be placed in Hold from the Run or Holdback state. In hold the setpoint is frozen at the current programmer setpoint and the time remaining parameter frozen at its last value. In this state you can make temporary changes to program parameters such as a target setpoint, ramp rates and times. These changes will only remain effective until the end of the currently running segment, when they will be overwritten by the stored program values.

#### 21.1.4 **Program Cycles**

If the Program Cycles parameter is chosen as greater than 1, the program will execute all its segments (including calls to other programs) then repeat from the beginning. The number of cycles is determined by the parameter value. The Program Cycles parameter has a range of 0 to 999 where 0 is enumerated to CONTinuous.

#### 21.1.5 Servo

Servo can be set in configuration so that when a program is run the setpoint can start from the initial controller setpoint or from the current process value. Whichever it is, the starting point is called the servo point. This can be set in the program.

Servo to PV will produce a smooth and bumpless start to the process.

Servo to SP may be used in a Ramp Rate programmer to guarantee the time period of the first segment. (Note: in a Time to Target programmer the segment duration will always be determined by the setting of the Segment Duration parameter.)

#### **Skip Segment** 21.1.6

Moves immediately to the next segment and starts the segment from the current setpoint value.

#### 21.1.7 Advance Segment

Sets the program setpoint equal to the target setpoint and moves to the next segment.

#### 21.1.8 Fast x10 mode

Executes the program at 10x the normal speed. It is provided so that programs can be tested **but the** process should not be run in this state.

#### 21.1.9 Sensor break recovery

On sensor break, the program state changed to HOLD if the current state is RUN or HOLDBACK. Sensor break is defined as status bad on the PV Input parameter. If the program state is in HOLD when PV input status returns to OK, the program state is automatically set back to RUN.

Part No HA027988 Issue 3.0 Aug-04



### 21.1.10 Holdback (Guaranteed Soak)

Holdback freezes the program if the process value (PV) does not track the setpoint (SP) by more than a user defined amount. The instrument will remain in HOLDBACK until the PV returns to within the requested deviation from setpoint. The display will flash the HOLD beacon.

In a **Ramp** it indicates that the PV is lagging the SP by more than the set amount and that the program is waiting for the process to catch up.

In a **Dwell** it freezes the dwell time if the difference between the SP and PV exceeds the set limits.

In both cases it guarantees the correct soak period for the product.

Each program can be configured with a holdback value. Each segment determines the holdback function.

Holdback will cause the execution time of the program to extend, if the process cannot match the demanded profile.

Holdback state will not change the user's access to the parameters. The parameters will behave as if in the RUN state.



Figure 21-4: Effect of Holdback to Produce Guaranteed Soak

The above diagram demonstrates that the demanded setpoint (SP) will only change at the rate specified by the program when the PV's deviation is less than the holdback value. When the Deviation between the setpoint and PV is greater than the holdback value (HBk Val) the setpoint ramp will pause until the deviation returns to within the band.

The next segment will not start until the deviation between Setpoint and PV is less than the holdback value.

Four types of Holdback are available:-

| None | Holdback is disabled for this segment.                                                                                                                |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| High | Holdback is entered when the PV is greater than the Setpoint <b>plus</b> HBk Val.                                                                     |
| Low  | Holdback is entered when the PV is lower than the Setpoint <b>minus</b> HBk Val.                                                                      |
| Band | Holdback is entered when the PV is <b>either</b> greater than the Setpoint <b>plus</b> HBk Val <b>or</b> lower than the Setpoint <b>minus</b> HBk Val |

2 rue René Laennec 51500 Taissy France

Fax: 03 26 85 19 08, Tel : 03 26 82 49 29



178.

# 21.1.11 Segment Types

A segment may be set as:-

| Ramp  | A Ramp segment provides a controlled change of setpoint from an original to a target setpoint. The duration of the ramp is determined by the rate of change specified. Two styles of ramp are possible in the range, Ramp-Rate or Time-To-Target.                                                      |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | The ramp is specified by the target setpoint and the desired ramp rate. The ramp rate parameter is presented in engineering units (°C, °F, Eng.) per real time units (Seconds, Minutes or Hours). If the units are changed, all ramp rate are re-calculated to the new units and clipped if necessary. |
| Dwell | The setpoint remains constant for a specified period at the specified target. The operating setpoint of a dwell is inherited from the previous segment.                                                                                                                                                |
| Step  | The setpoint changes instantaneously from its current value to a new value at the beginning of a segment. A Step segment has a minimum duration of 1 second.                                                                                                                                           |
| Call  | A CALL segment may only be selected in instruments offering multiple programs.                                                                                                                                                                                                                         |
|       | The segment allows programs to be nested within each other.                                                                                                                                                                                                                                            |
|       | To prevent re-entrant programs from being specified, only higher number programs may be called from a lower program.                                                                                                                                                                                   |
|       | i.e. program 1 may call programs 2 through 50, but program 49 may only call program 50.                                                                                                                                                                                                                |
|       | When a CALL segment is selected the operator may specify how many cycles the called program will execute. The number of cycles is specified in the calling program. If a called program has a number of cycles specified locally, they will be ignored.                                                |
|       | A CALL segment will not have a duration, a CALL segment will immediately transfer execution to the called program and execute its first segment.                                                                                                                                                       |
|       | Called programs do not require any modification, the calling program treats any END segments as return instructions.                                                                                                                                                                                   |
|       | The example shows Prog 50<br>(Ramp/Dwell/Ramp) inserted in<br>place of segment 3/Program1.                                                                                                                                                                                                             |
|       | Prog 50 can be made to repeat<br>using the 'Cycles' parameter.<br>Prog50<br>Prog1 Seg1 Seg2 Seg3<br>Seg4 Seg5 Seg6                                                                                                                                                                                     |
| End   | A program may contain one End segment. This allows the program to be truncated to the number of segments required.                                                                                                                                                                                     |
|       | The end segment can be configured to have an indefinite dwell or to reset the program. This is selectable by the user.                                                                                                                                                                                 |
|       | If a number of program cycles are specified for the program, then the End segment is not executed until the last cycle has completed.                                                                                                                                                                  |


## 21.1.12 Power Fail Recovery

In the event of power fail to the controller, a strategy may be set in configuration level, which defines how the controller behaves on restoration of the power. These strategies include:

- Continue The program setpoint returns immediately to its last value prior to the power down. This may cause full power to be applied to the process for a short period to heat the process back to its value prior to the power failure.
- Ramp back This will servo the program setpoint to the measured value (the PV Input parameter value), then return to the target setpoint at the current (or previous) ramp rate. The setpoint is not allowed to step change the program setpoint. The outputs will take the state of the segment which was active before power was interrupted.
- Reset The process is aborted by resetting the program. All event outputs will take the reset state.

The display does not warn the operator that a power interruption has occurred.

### 21.1.12.1 Ramp back (Power fail during Dwell segments.)

If the interrupted segment was a Dwell, then the ramp rate will be determined by the previous ramp segment.

On achieving the Dwell setpoint, the dwell will continue from the point at which the power was interrupted.

Note: If a previous ramp segment does not exist, i.e. the first segment of a program is a dwell, then the Dwell will continue at the "servo to PV" setpoint.

### 21.1.12.2 Ramp back (power fail during Ramp segments)

If the interrupted segment was a ramp, then the programmer will servo the program setpoint to the PV, then ramp towards the target setpoint at the previous ramp rate. Previous ramp rate is the ramp rate at power fail.





### 21.1.12.3 Ramp back (power fail during Time-to-target segments)

If the programmer was defined as a Time-to-Target programmer then when the power is returned the previous ramp rate will be recovered. The Time remaining will be recalculated. The rule is to maintain RAMP RATE, but alter TIME REMAINING.



180.

2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com

Issue 3.0

Aug-04

Part No HA027988

Site web : www.hvssystem.com

## 21.1.13 Sync mode

This mode will allow two or more programmers to by synchronised together. This means that the start of each segment (excluding the first) will begin at the same time. Two or more instruments may be synchronised by wiring the "end of segment" and "sync input" parameters between units. (see diagram below).

Set "SyncMode" to Yes

Wire instruments as follows :-



Figure 21-5: Synchronisation of three controllers

At the end of a segment, the program will be put into a temporary hold state (program status will continue to show that the program is running), the hold beacon will flash, the end\_of\_segment parameter will be true. Once all segments have completed, the SyncInput goes high and the next segment is started.

If the "SyncMode" is disabled, the "End\_Of\_Segment" parameter is guaranteed to be true for 1 tick at the end of every segment.

Part No HA027988 Issue 3.0 Aug-04



## 21.2 Creating or Editing a Program

Press (a) as many times as necessary to select the '**Program'** page, or, in configuration level, press the PROG button and this will select the first sub-header - '**All**'. This allows you to configure and view parameters common to all programs in the controller. The following is a list of the parameters.

| List Header – Program |                                                                                                                                                                                                                                                                                                                                                                                           | Sub-header: All (only available in configuration level)                                                                                                                                                                                                                                                                                                      |                                                                                                    |         |        |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------|--------|
| Name                  | Parameter Description                                                                                                                                                                                                                                                                                                                                                                     | Value                                                                                                                                                                                                                                                                                                                                                        |                                                                                                    | Default | Access |
| to select             |                                                                                                                                                                                                                                                                                                                                                                                           | l l l l l l l l l l l l l l l l l l l                                                                                                                                                                                                                                                                                                                        | to change                                                                                          |         | Level  |
| PV Input              | The programmer uses the PV input for a<br>number of functions<br>In holdback, the PV is monitored against the<br>setpoint, and if a deviation occurs the program<br>is paused.<br>The programmer can be configured to start its<br>profile from the current PV value (servo to PV).<br>The programmer monitors the PV value for<br>Sensor Break. The programmer holds in sensor<br>break. | The PV Input is normally wired<br>from the loop TrackPV<br>parameter.<br>Note: This input is<br>automatically wired when the<br>programmer and loop are<br>enabled and there are no<br>existing wires to track interface<br>parameters.<br>Track interface parameters are<br>Programmer.Setup, PVInput,<br>SPInput, Loop.SP, AltSP,<br>Loop.SP, AltSPSelect. |                                                                                                    |         | Conf   |
| SP Input              | The programmer needs to know the working<br>setpoint of the loop it is trying to control. The<br>SP input is used in the servo to setpoint start<br>type.                                                                                                                                                                                                                                 | SP Input is normally wired from the loop Track SP parameter as the PV input.                                                                                                                                                                                                                                                                                 |                                                                                                    |         | Conf   |
| Servo                 | The transfer of program setpoint to PV Input<br>(normally the Loop PV) or the SP Input<br>(normally the Loop setpoint).                                                                                                                                                                                                                                                                   | PV<br>SP                                                                                                                                                                                                                                                                                                                                                     | See also section 21.1.5.                                                                           |         | Conf   |
| Power Fail            | Power fail recovery strategy                                                                                                                                                                                                                                                                                                                                                              | Ramp<br>Reset<br>Cont                                                                                                                                                                                                                                                                                                                                        | See section 21.1.12.                                                                               |         | Conf   |
| Sync Input            | The synchronise input is a way of synchronising<br>programs. At the end of a segment the<br>programmer will inspect the sync. input, if it is<br>True (1) then the programmer will advance to<br>the next segment. It is typically wired from the<br>end of segment output of another<br>programmer.<br>Only appears if 'SyncMode' = 'Yes'                                                | 0                                                                                                                                                                                                                                                                                                                                                            | This will normally be<br>wired to the 'End of<br>Seg' parameter as<br>shown in section<br>21.1.13. |         | Conf   |
| Max Events            | To set the maximum number of output events<br>required for the program. This is for<br>convenience to avoid having to scroll through<br>unwanted events when setting up each<br>segment                                                                                                                                                                                                   | 1 to 8                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    |         | Conf   |
| SyncMode              | Allows multiple controllers to be synchronised at the end of each segment                                                                                                                                                                                                                                                                                                                 | No<br>Yes                                                                                                                                                                                                                                                                                                                                                    | Sync output disabled<br>Sync output enabled                                                        |         | Conf   |
| Prog Reset            | Flag showing reset state                                                                                                                                                                                                                                                                                                                                                                  | No/Yes                                                                                                                                                                                                                                                                                                                                                       | Can be wired to logic                                                                              |         | R/O    |
| Prog Run              | Flag showing run state                                                                                                                                                                                                                                                                                                                                                                    | No/Yes                                                                                                                                                                                                                                                                                                                                                       | inputs to provide                                                                                  |         | R/O    |
| Prog Hold             | Flag showing hold state                                                                                                                                                                                                                                                                                                                                                                   | No/Yes                                                                                                                                                                                                                                                                                                                                                       | control                                                                                            |         | R/O    |
| Event 1 to 8          | Flags showing event states                                                                                                                                                                                                                                                                                                                                                                | No/Yes                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    |         | R/O    |
| End of Seg            | Flag showing end of segment state                                                                                                                                                                                                                                                                                                                                                         | No/Yes                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    |         | R/O    |



Now select the program number to be created or edited. (Press I followed by O or O).

Programs can be created and edited in Level 3 or configuration level.

This gives access to parameters which allow you to set up each segment of the selected program. The following table lists these parameters:-

| List Header – Program |                                                                                                          | Sub-header: 1 to 50 |                                                       |         |        |
|-----------------------|----------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------|---------|--------|
| Name                  | Parameter Description                                                                                    | Value               |                                                       | Default | Access |
| to select             |                                                                                                          | l ▲ <sub>or</sub>   | to change                                             |         | Level  |
| Segments Used         | This value automatically increments when another segment is added                                        | 1 to 50             |                                                       | 1       | R/O    |
| Holdback<br>Value     | Deviation between SP and PV at which<br>holdback is applied. This value applies to the<br>whole program. | Minimum se          | etting 0                                              |         | L3     |
| Ramp Units            | Time units applied to the segments                                                                       | Sec                 | Seconds                                               |         | L3     |
|                       |                                                                                                          | Min                 | Minutes                                               |         |        |
|                       |                                                                                                          | Hour                | Hours                                                 |         |        |
| Cycles                | Number of times the whole program repeats                                                                | Cont                | Repeats continuously                                  |         | L3     |
|                       |                                                                                                          | 1 to 999            | Program executes once to 999 times                    |         |        |
| Segment               | To select the segment to set up                                                                          | 1 to 50             |                                                       |         | L3     |
| Segment Type          | To define the type of segment.<br>See also section 21.1.11.                                              | End                 | Last segment in the program                           | End     | L3     |
|                       |                                                                                                          | Rate                | Rate of change of SP                                  |         |        |
|                       |                                                                                                          |                     | Duration to new SP                                    |         |        |
|                       |                                                                                                          | Time                | Duration at previous<br>SP                            |         |        |
|                       |                                                                                                          | Dwell               | Rapid change to new SP                                |         |        |
|                       |                                                                                                          | Step                | To insert a new                                       |         |        |
|                       |                                                                                                          | Call                | current program                                       |         |        |
| End Type              | Only shown if 'Segment Type' = 'End'.                                                                    | Dwell               | The program will                                      | Dwell   | L3     |
|                       | Defines the action to be taken at the end of the program                                                 |                     | remain at last SP indefinitely                        |         |        |
|                       |                                                                                                          | Reset               | The program will<br>return to controller<br>only mode |         |        |
| Call Program          | Only shown if 'Segment Type' = 'Call'.                                                                   | Up to 50 (c         | urrent program number                                 |         | L3     |
|                       | Enter the program number to be inserted in place of the selected segment                                 | excluded)           |                                                       |         |        |
| Call Cycles           | Only shown if 'Segment Type' = 'Call'.                                                                   | Cont                | Repeats continuously                                  |         | L3     |
|                       | Defines the number of times the inserted program repeats                                                 | 1 to 999            | Program executes once to 999 times                    |         |        |
| Holdback Type         | Sets the type of holdback applicable to the                                                              | Off                 | No holdback applied                                   |         | L3     |
|                       | selected segment                                                                                         |                     | Deviation low                                         |         |        |
|                       |                                                                                                          | Low                 | Deviation high                                        |         |        |
|                       |                                                                                                          | High                | Deviation high and                                    |         |        |
|                       |                                                                                                          | Band                | low                                                   |         |        |

Part No HA027988 Issue 3.0



Aug-04

| Duration   | Only shown if 'Segment Type' = 'Dwell' or<br>'Time'.<br>Sets the time to execute the segment.                                       | 0:00.0 to 500<br>0.1 sec to 50 | ):00<br>10 hours        | L3 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|----|
| Target SP  | Only shown if 'Segment Type' = 'Rate', 'Time' or<br>'Step'.<br>To enter the SP which is to be achieved at the<br>end of the segment |                                |                         | L3 |
| Ramp Rate  | Only shown if 'Segment Type' = 'Rate'.<br>To enter the rate in units/time at which the SP<br>is required to change                  | 0.1 to 9999.9<br>hour          | ) units per sec, min or | L3 |
| Event Outs | To define the state of up to eight event outputs<br>in the selected segment                                                         | = Off<br>■ = On                |                         | L3 |

184.

Aug-04

## 21.3 To Select, Run, Hold or Reset a Program

When the controller is ordered as a programmer a 'User Screen' is configured to allow quick access to the programmer. The example below uses this screen.

| Do This                                                                          | The Display You Should See                                               | Additional Notes                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10. From any display press ()<br>until the 'Programmer User<br>Display' is shown | USP 156.0<br>Program 1<br>Status Reset<br>PSP 0.0                        |                                                                                                                                                                                                                               |
| 11. Press 🕑 to <b>'Program'</b>                                                  | WSP 0.5<br>Program ¢2:Biscuit                                            | In this example Program Number 2 is chosen<br>and has been given a user defined name.                                                                                                                                         |
| 12. Press Or To choose the program number to be run                              |                                                                          | using the off-line programming package<br>'iTools'.                                                                                                                                                                           |
| 13. Press or select 'Status'<br>and set this to 'Run'                            | <b>USP 8.1</b><br>Program 2:Biscuit<br>Segment 1<br>Seg Time Left 0:03.7 | 'RUN' is displayed in the indicator beacons<br>section of the main display.<br>The view shown here shows current working<br>setpoint, program being run, current<br>segment number and time left to complete<br>this segment. |
| 14. To Hold a program press                                                      |                                                                          | Press again to continue the program.<br>When the program is complete 'RUN' will<br>flash                                                                                                                                      |
| 15. To Reset a program press                                                     |                                                                          | 'RUN' will extinguish and the controller will<br>return to the HOME display shown in section<br>1.10.                                                                                                                         |

Notes:-

- An alternative way to run, hold or reset the program from this screen, is to scroll to 'Program Status' 1. using  $\odot$  and select 'Run', 'Hold' or 'Reset' using lacksquare or lacksquare
- 2. If the program number has been previously selected the program can be run, held or reset just by pressing the button

## 21.4 Program Editing Using iTools

ITools may be used to enter or edit programs, see Chapter 26 for a description.





## 22. CHAPTER 22 SWITCH OVER

This facility is commonly used in temperature applications which operate of a wide range of temperature. A thermocouple may be used to control at lower temperatures and a pyrometer then controls at very high temperatures. Alternatively two thermocouples of different types may be used.

The diagram below shows a process heating over time with boundaries which define the switching points between the two devices. The higher boundary (2 to 3) is normally set towards the top end of the thermocouple range and this is determined by the 'Switch Hi' parameter. The lower boundary (1 to 2) is set towards the lower end of the pyrometer (or second thermocouple) range using the parameter 'Switch Lo'. The controller calculates a smooth transition between the two devices.



Figure 22-1: Thermocouple to Pyrometer Switching

## 22.1.1 Example: To Set the Switch Over Levels

Select Level 3 or configuration level

- 1. Press 🗐 as many times as necessary to display the 'SwOver' header
- 2. Press  $\bigcirc$  to scroll to 'Switch Hi'
- 3. Press  $\bigcirc$  or  $\bigcirc$  to a value which is suitable for the pyrometer (or high temperature thermocouple) to take over the control of the process
- 4. Press  $\bigcirc$  to scroll to 'Switch Lo'
- 5. Press  $\bigcirc$  or  $\bigcirc$  to a value which is suitable for the low temperature thermocouple to control the process

Issue 3.0

Aug-04

Part No HA027988

#### 22.1.2 **Switch Over Parameters**

| List Header – SwOver |                                                                                                                                                                                                 | Sub-headers: None                                                      |                                                                                                                                                                                                                  |          |                 |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|--|
| Name<br>to select    | Parameter Description                                                                                                                                                                           | Value                                                                  | to change                                                                                                                                                                                                        | Default  | Access<br>Level |  |
| Input Hi             | Sets the high limit for the switch<br>over block. It is the highest<br>reading from input 2 since it is<br>the high range input sensor.                                                         | Input range                                                            |                                                                                                                                                                                                                  |          | L3              |  |
| Input Lo             | Sets the low limit for the switch<br>over block. It is the lowest<br>reading from input 1 since it is<br>the low range input sensor                                                             |                                                                        |                                                                                                                                                                                                                  |          | L3              |  |
| Switch Hi            | Defines the high boundary of the switchover region                                                                                                                                              | Between Inp                                                            | ut Hi and Input Lo                                                                                                                                                                                               |          | L3              |  |
| Switch Lo            | Defines the low boundary of the switchover region.                                                                                                                                              |                                                                        |                                                                                                                                                                                                                  |          | L3              |  |
| Input 1              | The first input value. This must be the low range sensor.                                                                                                                                       | These will no<br>thermocoup                                            | ormally be wired to the<br>le/pyrometer input sources via the                                                                                                                                                    |          | R/O if<br>wired |  |
| Input 2              | The second input value. This must be the high range sensor                                                                                                                                      | will be the r                                                          | ange of the input chosen.                                                                                                                                                                                        |          | R/O if<br>wired |  |
| Fall Value           | In the event of a bad status, the<br>output may be configured to<br>adopt the fallback value. This<br>allows the strategy to dictate a<br>safe output in the event of a<br>fault being detected | Between Inp                                                            | ut Hi and Input Lo                                                                                                                                                                                               | 0.0      | L3              |  |
| Fall Type            | Fall back type                                                                                                                                                                                  | Clip Bad<br>Clip Good<br>Fall Bad<br>Fall Good<br>Upscale<br>Downscale |                                                                                                                                                                                                                  | Clip Bad | Conf            |  |
| Selected IP          | Indicates which input is currently selected                                                                                                                                                     | Input 1<br>Input 2                                                     | 0: Input 1 has been selected<br>1: Input 2 has been selected<br>2: Both inputs are used to calculate<br>the output                                                                                               |          | R/O             |  |
| ErrMode              | The action taken if the selected input is BAD                                                                                                                                                   | UseGood<br>ShowBad                                                     | 0: Assumes the value of a good<br>input<br>If the currently selected input is<br>BAD the output will assume the<br>value of the other input if it is<br>GOOD<br>1: If selected input is BAD the<br>output is BAD | UseGood  | Conf            |  |
| Switch PV            | The process variable produced from the 2 input measurements                                                                                                                                     |                                                                        |                                                                                                                                                                                                                  |          | R/O             |  |
| Status               | Status of the switchover block                                                                                                                                                                  | Good<br>Bad                                                            |                                                                                                                                                                                                                  |          | R/O             |  |

Part No HA027988 Issue 3.0 Aug-04



# 23. CHAPTER 23 TRANSDUCER SCALING

The 3500 controller includes two transducer calibration function blocks which may be enabled in configuration level in the 'Inst' 'Opt' page. These are a software function blocks which provide a method of offsetting the calibration of the controller input when compared to a known input source. Transducer scaling is often performed as a routine operation on a machine to take out system errors. For this reason it can be carried out in operator level 1 as already described in Chapter 1.

Transducer scaling can be applied to any input or derived input, i.e. the PV Input or Analogue Input fitted in one of the module slots. These can be wired in configuration level to the above inputs.

Four types of calibration are explained in this chapter in Level 3 or configuration levels:-

- Auto-tare
- Shunt Calibration
- Load Cell Calibration
- Comparison Calibration

## 23.1 Auto-Tare Calibration

The auto-tare function is used, for example, when it is required to weigh the contents of a container but not the container itself.

The procedure is to place the empty container on the weigh bridge and 'zero' the controller. Since it is likely that following containers may have different tare weights the auto-tare feature is always available in the controller at access level 1. The procedure to enter a tare offset has already been described in chapter 1.

In level 3 or configuration level further parameters are available which are used to pre-configure the tare measurement or for interrogation purposes. Tare calibration may be carried out no matter what type of transducer is in use.



Figure 23-1: Effect of Auto Tare



Issue 3.0

Aug-04

Part No HA027988

## 23.2 Strain Gauge

A strain gauge consists of resistive four wire measurement bridge where all four arms are in balance when no load is being measured. It is energised by a power supply normally 5Vdc or 10Vdc which is a module fitted into any slot. It is calibrated by switching a calibration resistor across one arm of the four wire measurement bridge. For this reason the calibration is referred to as 'Shunt' calibration. The value of this resistor is chosen so that it represents 80% of the span of the transducer.



Figure 23-2: Strain Gauge

## 23.3 Load Cell

A load cell provides an analogue output which can be in Volts, milli-Volts or milli-Amps. This may be connected to the PV Input or Analogue Input. The wiring connections are shown in Chapter 1.

When no load is placed on the cell the output is normally zero. However, in practice there may be a residual output and this can be calibrated out in the controller.

The high end is calibrated by placing a reference weight on the load cell and performing a high end calibration in the controller.



Figure 23-3: Load Cell Calibration

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

## 23.4 Comparison Calibration

Comparison calibration is used to calibrate the controller against a second reference instrument.

The load is removed (or taken to a minimum) from the reference device. The controller low end calibration is done using the 'Cal Enable' parameter and entering the reading from the reference instrument.

Add a weight and when the reading has become stable select the 'Cal Hi Enable' parameter then enter the new reading from the reference instrument.



Figure 23-4: Comparison Calibration



190.

## 23.5 Transducer Scaling Parameters

| List Header – Txdr |                                                                                                                                                                                                                                                                | Sub-headers: 1 or 2                                                        |                                                                              |         |                                  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|---------|----------------------------------|
| Name<br>to select  | Parameter Description                                                                                                                                                                                                                                          | Value                                                                      | to change                                                                    | Default | Access<br>Level                  |
| Cal Type           | Used to select the type of<br>transducer calibration to perform<br>See descriptions at the beginning<br>of this chapter.                                                                                                                                       | <ol> <li>Off</li> <li>Shunt</li> <li>Load Cell</li> <li>Compare</li> </ol> | Transducer type unconfigured<br>Shunt calibration<br>Load Cell<br>Comparison | Off     | Conf                             |
| Cal Enable         | To make the transducer ready<br>for calibration.<br>Must be set to Yes to allow<br>calibration to be done at L1.<br>This includes Tare Cal.                                                                                                                    | No<br>Yes                                                                  | Not ready<br>Ready                                                           | No      | Conf                             |
| Range Max          | The maximum permissible range of the scaling block                                                                                                                                                                                                             | Range min to                                                               | 99999                                                                        | 1000    | Conf                             |
| Range Min          | The minimum permissible range of the scaling block                                                                                                                                                                                                             | -19999 to Ra                                                               | nge max                                                                      | 0       | Conf                             |
| Start Tare         | Begin tare calibration                                                                                                                                                                                                                                         | No<br>Yes                                                                  | Start tare calibration                                                       | No      | L1 if 'Cal<br>Enable'<br>= 'Yes' |
| Start Cal          | Starts the Calibration process.<br>Note: for Load Cell and<br>Comparison calibration 'Start Cal'<br>starts the first calibration point.                                                                                                                        | No<br>Yes                                                                  | Start calibration                                                            | No      | L1 if 'Cal<br>Enable'<br>= 'Yes' |
| Start Hi Cal       | For Load Cell and Comparison<br>calibration the 'Start High Cal'<br>must be used to start the second<br>calibration point.                                                                                                                                     | No<br>Yes                                                                  | Start high calibration                                                       | No      | L1 if 'Cal<br>Enable'<br>= 'Yes' |
| Clear Cal          | Clears the current calibration<br>constants. This returns the<br>calibration to unity gain                                                                                                                                                                     | No<br>Yes                                                                  | To delete previous calibration values                                        | No      | L3                               |
| Tare Value         | Enter the tare value of the container                                                                                                                                                                                                                          |                                                                            |                                                                              |         | Conf                             |
| Input Hi           | Sets the scaling input high point                                                                                                                                                                                                                              |                                                                            |                                                                              |         | L3                               |
| Input Lo           | Sets the scaling input low point                                                                                                                                                                                                                               |                                                                            |                                                                              |         | L3                               |
| Scale Hi           | Sets the scaling output high<br>point. Usually the same as the<br>'Input Lo'                                                                                                                                                                                   |                                                                            |                                                                              |         | L3                               |
| Scale Lo           | Sets the scaling output low point.<br>Usually 80% of 'Input Hi'                                                                                                                                                                                                |                                                                            |                                                                              |         | L3                               |
| Cal Band           | The calibration algorithms use<br>the threshold to determine if the<br>value has settled. When<br>switching in the shunt resistor,<br>the algorithm waits for the value<br>to settle to within the threshold<br>before starting the high<br>calibration point. |                                                                            |                                                                              |         | Conf                             |
| Shunt State        | Indicates when the internal shunt<br>calibration resistor is switched in.<br>Only appears if 'Cal Type' =<br>'Shunt'                                                                                                                                           | Off<br>On                                                                  | Resistor not switched in<br>Resistor switched in                             |         | L1                               |

Part No HA027988 Issue 3.0 Aug-04



| Cal Active    | Indicates calibration taking place                                                                                     | Off                                            | Inactive                                                                                          | L1 R/O |
|---------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------|--------|
|               |                                                                                                                        | On                                             | Active                                                                                            |        |
| Input Value   | The input value to be scaled.                                                                                          | -9999.9 to 99                                  | 999.9                                                                                             | L3     |
| Output Value  | The Input Value is scaled by the<br>block to produce the Output<br>Value                                               |                                                |                                                                                                   | L3     |
| Output Status | The status of the output<br>accounting for sensor fail signals<br>passed to the block and the state<br>of the scaling. | Good<br>Bad                                    |                                                                                                   | Conf   |
| Cal Status    | Indicates the progress of calibration                                                                                  | 0: Idle<br>1: Active<br>2: Passed<br>3: Failed | No calibration in progress<br>Calibration in progress<br>Calibration Passed<br>Calibration Failed | L1 R/O |

## 23.5.1 Parameter Notes

| Enable Cal   | This may be wired to a digital input for an external switch. If not wired, then the value may be changed.                                                                                                                      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | When enabled the transducer parameters may be altered as described in the previous sections.<br>When the parameter has been turned On it will remain on until turned off manually even if the<br>controller is powered cycled. |
| Start Tare   | This may be wired to a digital input for an external switch. If not wired, then the value may be changed.                                                                                                                      |
| Start Cal    | This may be wired to a digital input for an external switch. If not wired, then the value may be changed.                                                                                                                      |
|              | It starts the calibration procedure for:                                                                                                                                                                                       |
|              | Shunt Calibration                                                                                                                                                                                                              |
|              | The low point for Load Cell Calibration                                                                                                                                                                                        |
|              | The low point for Comparison Calibration                                                                                                                                                                                       |
| Start Hi Cal | This may be wired to a digital input for an external switch. If not wired, then the value may be changed.                                                                                                                      |
|              | It starts:-                                                                                                                                                                                                                    |
|              | The high point for Load Cell Calibration                                                                                                                                                                                       |
|              | The high point for Comparison Calibration                                                                                                                                                                                      |
| Clear Cal    | This may be wired to a digital input for an external switch. If not wired, then the value may be changed.                                                                                                                      |
|              | When enabled the input will reset to default values. A new calibration will overwrite the previous calibration values if Clear Cal is not enabled between calibrations.                                                        |
|              |                                                                                                                                                                                                                                |

192.

Aug-04

## 23.6 Transducer Summary Page

If the Transducer function block has been enabled then a transducer summary page is available in operator level 1 and 2. This means that calibration of the transducers can be done at this level although with some small limitations. This section describes the calibration procedure which can be carried out in levels 1 and 2.

## 23.6.1 Tare Calibration

The 3500 controller has an auto-tare function which is used, for example, when it is required to weigh the contents of a container but not the container itself.

The procedure is to place the empty container on the weighbridge and 'zero' the controller. Since it is likely that following containers may have different tare weights the auto-tare feature is available in the controller at access level 1 (provided 'Cal Enable' is set to 'Yes' in configuration level).

The procedure is as follows:-

|    | Do This                                          | The Display You Should See                           | Additional Notes                                                                                                          |
|----|--------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 1. | Place the empty container on the weigh bridge    |                                                      |                                                                                                                           |
| 2. | Press 🗐 until the Txdr1 (or 2) page is displayed | Txdr1                                                |                                                                                                                           |
| 3. | Press 🕝 until 'Start Tare' is<br>displayed       | Start Tare #No                                       |                                                                                                                           |
| 4. | Press ( ) or ( ) to select 'Yes'                 | Txdr<br>Cal Started                                  | The controller automatically calibrates the to the tare weight which is measured by the transducer and stores this value. |
|    |                                                  |                                                      | During this measurement the displays shown here will be shown                                                             |
|    |                                                  | <b>Txdr1</b><br>Start Tare #Yes<br>Cal Status Active |                                                                                                                           |
|    |                                                  | Txdr<br>Cal Passed                                   |                                                                                                                           |
|    |                                                  | Txdr<br>Cal Esilad                                   | If the calibration fails the message Cal<br>Failed will be shown.                                                         |
|    |                                                  | Press A+0 to Ack                                     | This may be due to the measured input being out of range                                                                  |
|    |                                                  | <b>Txchrl</b><br>Start Cal #No<br>Cal Status Failed  |                                                                                                                           |

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

## 23.6.2 Strain Gauge

This is also known as shunt calibration since it refers to switching a calibration resistor across one arm of a four wire measurement bridge in a strain gauge transducer. Connections for this are shown in section 1.6.1.

To calibrate a strain gauge:-

| Do This |                                                                                                          | The Display You Should See                                                            | Additional Notes                                                                                                                                                                |
|---------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.      | Remove all load from the<br>transducer to establish a zero<br>reference<br>Select Txdr1 (or 2) as in the | Txchr1           0.0         0.0         0.0           Start         Tare         #No |                                                                                                                                                                                 |
|         | previous example                                                                                         |                                                                                       |                                                                                                                                                                                 |
| 3.      | Press 🕑 to 'Start Cal'                                                                                   | Txdr1<br>0.0 0.0 1000.0                                                               |                                                                                                                                                                                 |
| 4.      | Press ( ) or ( ) to select 'Yes'                                                                         | Start Tare No<br>Start Cal ‡Yes                                                       |                                                                                                                                                                                 |
| 5.      | The controller will now calibrate both the zero and span                                                 | Txolr<br>nal stated                                                                   | The status during calibration is displayed in the same way as the previous example.                                                                                             |
|         |                                                                                                          |                                                                                       | The controller automatically performs the<br>following sequence                                                                                                                 |
|         |                                                                                                          |                                                                                       | 1. Disconnect the shunt resistor                                                                                                                                                |
|         |                                                                                                          |                                                                                       | <ol> <li>Calculate the low point calibration<br/>value by continuously averaging two<br/>lots of 50 measurements of the input<br/>until stable readings are obtained</li> </ol> |
|         |                                                                                                          |                                                                                       | 3. Connect the shunt resistor                                                                                                                                                   |
|         |                                                                                                          |                                                                                       | <ol> <li>Calculate the high point calibration<br/>value by averaging two lots of 50<br/>measurements of the input</li> </ol>                                                    |

194.

#### 23.6.3 Load Cell

A load cell with V, mV or mA output may be connected to the PV Input or an analogue input module. The wiring connections are shown in section 1.6.1.

To calibrate a load cell:

|    | Do This                                                           | The Display You Should See        | Additional Notes                                      |
|----|-------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------|
| 1. | Remove all load from the transducer to establish a zero reference |                                   |                                                       |
| 2. | Select Txdr1 (or 2) as in the previous example                    |                                   |                                                       |
| 3. | Press 🕑 to 'Start Cal'                                            | Txdr1<br>Start Tare No            | The controller will calibrate to the low point        |
| 4. | Press 🛆 or 文 to select 'Yes'                                      | Start Cal #Yes<br>Start Hi Cal No |                                                       |
| 5. | Place a reference weight on the load cell                         |                                   |                                                       |
| 6. | Press 🕑 to 'Start Hi Cal'                                         | Txdr1<br>Start Cal No             | The controller will then calibrate to the high point. |
| 7. | Press ( ) or ( ) to select 'Yes'                                  | Start Hi Cal                      |                                                       |

Aug-04 Part No HA027988 Issue 3.0



## 23.6.4 Comparison Calibration

Comparison calibration is used to calibrate the controller against a second reference instrument.

The input may be set to any value and, when the system is stable, a reading is taken from the reference measurement device and entered into the controller. The controller stores both this new target value and the actual reading taken from its input.

The process is repeated at a different value, with the controller storing both the new target value and the reading taken from its input.

To calibrate against a known reference source:-

|    | Do This                                                                                     | The Display You Should See                                     | Additional Notes                                                                                                           |
|----|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 1. | Remove or reduce the load<br>from the transducer to establish<br>a low end reference        |                                                                |                                                                                                                            |
| 2. | Select Txdr1 (or 2) as in the previous example                                              |                                                                |                                                                                                                            |
| 3. | Press 🕑 to 'Start Cal'                                                                      | Txdr1                                                          |                                                                                                                            |
| 4. | Press ( ) or ( ) to select 'Yes'                                                            | Start Cal #Yes                                                 |                                                                                                                            |
| 5. | Press 🕝 to 'Cal Adjust'                                                                     | Txdr1<br>Start Cal #Yes                                        | The controller will not continue until a<br>number has been entered even if the<br>number is the same as that shown on the |
| 6. | Press $\bigcirc$ or $\bigcirc$ to enter the reading from the reference                      | Cal Status Active                                              | display.                                                                                                                   |
|    | instrument                                                                                  | Txdr1<br>Start Cal Yes<br>Cal Adjust #7<br>Cal Status Active   |                                                                                                                            |
| 7. | Press 😳 to confirm as requested on the display                                              | <b>Cal Adjust</b><br>7?<br>M+Cancel (++OK                      |                                                                                                                            |
| 8. | Add a load to the transducer to<br>obtain a high end reading on<br>the reference instrument | Txdr1<br>Start Cal No<br>Start Hi Cal #No<br>Cal Status Passed |                                                                                                                            |
| 9. | Repeat 3 to 7 above for the<br>high end reading using the<br>'Start Hi Cal' parameter       |                                                                |                                                                                                                            |



Aug-04

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

# 24. CHAPTER 24 USER VALUES

User values are registers provided for use in calculations. They may be used as constants in equations or temporary storage in extended calculations. Up to 16 User Values available provided they have been enabled in the 'Inst' Options page (Chapter 5) in configuration level. Each User Value can then be set up in the **'UserVal'** page.

## 24.1 User Value Parameters

| List Header – U   | srVal                                                                                                                                                                                       | Sub-headers: 1 to 16       |                                                                             |         |                 |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------|---------|-----------------|
| Name<br>to select | Parameter Description                                                                                                                                                                       | Value                      | to change                                                                   | Default | Access<br>Level |
| Units             | Units assigned to the User Value                                                                                                                                                            | None                       | None                                                                        |         | Conf            |
|                   |                                                                                                                                                                                             | Abs Temp °C                | Abs Temp °C/°F/°K,                                                          |         |                 |
|                   |                                                                                                                                                                                             | V, mV, A, m/               | Α,                                                                          |         |                 |
|                   |                                                                                                                                                                                             | PH, mmHg, p<br>inWW, Ohm   | osi, Bar, mBar, %RH, %, mmWG, inWG,<br>s, PSIG, %O2, PPM, %CO2, %CP, %/sec, |         |                 |
|                   |                                                                                                                                                                                             | RelTemp °C \               | .ºF\ºK(rel),                                                                |         |                 |
|                   |                                                                                                                                                                                             | Custom 1, C<br>Custom 5, C | ustom 2, Custom 3, Custom 4,<br>ustom 6,                                    |         |                 |
|                   |                                                                                                                                                                                             | sec, min, hrs,             |                                                                             |         |                 |
| Res'n             | Resolution of the User Value                                                                                                                                                                | XXXXX to X.XXXX            |                                                                             |         | Conf            |
| High Limit        | The high limit may be set for<br>each user value to prevent the<br>value being set to an out-of-<br>bounds value.                                                                           |                            |                                                                             |         | L3              |
| Low Limit         | The low limit of the user value<br>may be set to prevent the user<br>value from being edited to an<br>illegal value. This is important if<br>the user value is to be used as a<br>setpoint. |                            |                                                                             |         | L3              |
| Value             | To set the value within the range limits                                                                                                                                                    | See note 1                 |                                                                             |         | L3              |
| Status            | Can be used to force a good or<br>bad status onto a user value.<br>This is useful for testing status<br>inheritance and fallback<br>strategies.                                             | Good See note 1<br>Bad     |                                                                             |         | L3              |

Note 1:-

If 'Value' is wired into but 'Status' is not, then, instead of being used to force the Status it will indicate the status of the value as inherited form the wired connection to 'Value'.

Aug-04

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

## 25. CHAPTER 25 CALIBRATION

In this chapter calibration refers to calibration of the PV input and the Analogue Input module. Calibration is accessed using the 'Cal State' parameter which is only available in configuration level. Since the controller is calibrated during manufacture to traceable standards for every input range, it is not necessary to calibrate the controller when changing ranges. Furthermore, a continuous automatic check and correction of the calibration during the controllers normal operation means that it is calibrated for life. However, it is recognised that, for operational reasons, it may be a requirement to check or re-calibrate the controller. It is always possible to revert to the factory calibration if necessary.

## 25.1 Input Calibration

Inputs which can be calibrated:-

- **mV Input.** This is a linear 80mV range calibrated at two fixed points. This should always be done before calibrating either thermocouple or resistance thermometer inputs. mA ranges are included in the mV range.
- **Thermocouple** calibration involves calibrating the temperature offset of the CJC sensor only. Other aspects of thermocouple calibration are also included in mV calibration.
- **Resistance Thermometer**. This is also carried out at two fixed points  $150\Omega$  and  $400\Omega$ .

## 25.2 Precautions

Before starting any calibration procedure the following precautions should be taken:-

- 1. When calibrating mV inputs make sure that the calibrating source outputs less than 250mV before connecting it to the mV terminals. If accidentally a large potential is applied (even for less than 1 second), then at least one hour should elapse before commencing the calibration.
- 2. RTD and CJC calibration must not be carried out without prior mV calibration.
- 3. A pre-wired jig built using a spare instrument sleeve may help to speed up the calibration procedure especially if a number of instruments are to be calibrated.
- 4. Power should be turned on only after the controller has been inserted in the sleeve of the prewired circuit. Power should also be turned off before removing the controller from its sleeve.
- 5. Allow at least 10 minutes for the controller to warm up after switch on.

2 rue René Laennec 51500 Taissy France

Fax: 03 26 85 19 08, Tel : 03 26 82 49 29



## 25.2.1 To Calibrate mV Range

Calibration of the mV range is carried out using a 50 milli-volt source, connected as shown in the diagram below. mA calibration is included in this procedure.



Figure 25-1: Connections for mV Input Calibration

For best results 0mV should be calibrated by disconnecting the copper wires from the mV source and short circuiting the input to the controller

To calibrate the PV Input:-

|    | Do This                                                                                         | The Display You Should See                                          | Additional Notes                                                                                                |
|----|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 1. | From any display press () as<br>many times as necessary to<br>select the input to be calibrated | <b>FUIrput</b><br>010 Type \$40 mV<br>Lin Type Linear<br>Units None | This may be 'PVInput' or a 'DC Input' module                                                                    |
| 2. | Press 🕐 to select <b>'Cal State'</b>                                                            | PVIneut<br>Offset 0.0<br>SBrk Value 0.0<br>OCal State #Idle         |                                                                                                                 |
| 3. | Set mV source for 0mV                                                                           |                                                                     |                                                                                                                 |
| 4. | Press ( or ( to choose<br><b>'Lo-0mV'</b>                                                       | PUInput<br>Offset 0.0<br>SBrk Value 0.0                             | Abort by pressing $$ or $$                                                                                      |
| 5. | Press ( ) or ( ) to choose<br><b>'Confirm'</b>                                                  | UCal State #Lo-OmV                                                  |                                                                                                                 |
|    |                                                                                                 | PVInput<br>Offset 0.0<br>SBrk Value 0.0<br>OCal State ‡Confirm      |                                                                                                                 |
| 6. | Press 🕝 to select 'Go'                                                                          | PUInputOffset0.0SBrk Value0.0Cal State#Go                           | The controller will automatically perform the calibration procedure. At any stage you can Abort by pressing  or |
|    |                                                                                                 | PUInput.<br>Offset 0.0<br>SBrk Value 0.0<br>@Cal State #Busy        |                                                                                                                 |
|    |                                                                                                 | PVInput.<br>Offset 0.0<br>SBrk Value 0.0<br>OCal State \$Passed     |                                                                                                                 |

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

| 7.  | Press ( ) or ( ) to 'Accept'                               | PVInput<br>Offset 0.0<br>SBrk Value 0.0<br>GCal State #Accept | It is also possible to 'Abort' at this stage.<br>The controller then returns to the 'Idle' state.<br>By pressing Accept, this means that the<br>calibration will be used for as long as the<br>controller is switched on. When the controller<br>is switched off the calibration will revert to that<br>set during manufacture.<br>To use the new calibration permanently select<br>'Save User' as described in the next section |
|-----|------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.  | Set mV source for 50mV                                     |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9.  | Press 🕑 to select 'Hi-50mV'                                | PVIneut<br>Offset 0.0                                         | The controller will again automatically calibrate to the injected input mV.                                                                                                                                                                                                                                                                                                                                                      |
| 10. | Now repeat 5, 6 and 7 above to calibrate the high mV range | SBrk Value 8.8<br>(4Cal State #Hi-50mV                        | If it is not successful then <b>'Fail'</b> will be<br>displayed                                                                                                                                                                                                                                                                                                                                                                  |

## 25.2.2 To Save the New Calibration Data



## 25.2.3 To Return to Factory Calibration

| 12. | Press | $\bigcirc$ | to | select | 'Load | fact' |
|-----|-------|------------|----|--------|-------|-------|
|-----|-------|------------|----|--------|-------|-------|



The factory calibration will be reinstated

-----

-----

202.

Aug-04

#### 25.2.4 **Thermocouple Calibration**

Thermocouples are calibrated, firstly, by following the previous procedure for the mV ranges, then calibrating the CJC.

This can be carried out using an external CJC reference source such as an ice bath or using a thermocouple mV source. Replace the copper cable shown in the diagram below with the appropriate compensating cable for the thermocouple in use.



Figure 25-2: Conections for Thermocouple Calibration

Set the mV source to internal compensation for the thermocouple in use and set the output for 0mV. Then:-

|          | Do This                                                                                                               | The Display You Should See                                       | Additional Notes                                                                                                                                                            |
|----------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.       | This example is for PV Input<br>configured as a type K<br>thermocouple                                                | PUInput<br>IO Type ThermoCpl<br>OLin Type #K<br>Units None       |                                                                                                                                                                             |
| 2.       | From the mV calibration, press<br>or  to select <b>'CJC'</b>                                                          | <b>PUInput</b><br>SBrk Value 0.0<br>OCal State ‡CJC<br>Status CK |                                                                                                                                                                             |
| 3.<br>4. | Press () to select <b>'Confirm'</b><br>The remaining procedure is the<br>same as described in the previous<br>section | PVInput.<br>Offset 0.0<br>SBrk Value 0.0<br>OCal State #Confirm  | The controller automatically calibrates to the<br>CJC input at 0mV.<br>As it does this the display will show 'Busy'<br>then 'Passed', assuming a successful<br>calibration. |
|          |                                                                                                                       |                                                                  | If it is not successful then 'Failed' will be<br>displayed. This may be due to an incorrect<br>input mV                                                                     |

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

#### 25.2.5 **RTD Calibration**

The two points at which the RTD range is calibrated are  $150.00\Omega$  and  $400.00\Omega$ .

Before starting RTD calibration:

- A decade box with total resistance lower than 1K must be connected in place of the RTD as indicated . on the connection diagram below before the instrument is powered up. If at any instant the instrument was powered up without this connection then at least 10 minutes must elapse from the time of restoring this connection before RTD calibration can take place.
- The instrument should be powered up for at least 10 minutes. •

Before using or verifying RTD calibration:

The mV range must be calibrated first.



Figure 25-3: Connections for RTD Calibration

|    | Do This                                                | The Display You Should See                                               | Additional Notes                                                                                                                                                                                                                                                                                           |
|----|--------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | This example is for PV Input configured as a Pt100 RTD | PUInput<br>GIO Type +RTD<br>Lin Type PT100<br>Uhits AbsTemp              |                                                                                                                                                                                                                                                                                                            |
| 2. | Press 🕑 to select <b>'Lo-</b><br>150ohm'               | <b>PVInput</b><br>SBrk Value 0.0<br>Lead Res 0.0<br>OCal State#Lo-150ohm |                                                                                                                                                                                                                                                                                                            |
| 3. | Set the decade box for 150.00 $\Omega$                 |                                                                          |                                                                                                                                                                                                                                                                                                            |
| 4. | Press  or  to choose<br>'Confirm'                      | PVInput<br>Offset 0.0<br>SBrk Value 0.0<br>GCal State ‡Confirm           | The controller automatically calibrates to<br>the injected 150.00 $\Omega$ input.<br>As it does this the display will show 'Busy'<br>then 'Pass', assuming a successful<br>calibration.<br>If it is not successful then 'Failed' will be<br>displayed. This may be due to an incorrect<br>input resistance |
| 5. | Set the decade box for<br>400.00Ω                      |                                                                          |                                                                                                                                                                                                                                                                                                            |
| 6. | Repeat the procedure for <b>'Hi-</b><br><b>400ohm'</b> | PVInput.<br>SBrk Value 0.0<br>Lead Res 0.0<br>UCal State#Hi-400ohm       | The calibration data can be saved or you can return to Factory Calibration as described in sections 25.2.2. and 25.2.3.                                                                                                                                                                                    |

204.



Part No HA027988 Issue 3.0

Site web : www.hvssystem.com

Aug-04

## 25.3 Calibration Parameters

| List Header - PV | / Input      | Sub-headers: | None                                               |         |        |
|------------------|--------------|--------------|----------------------------------------------------|---------|--------|
| Name             | Parameter    | Value        |                                                    | Default | Access |
| to select        | Description  | or 👽 to      | • or • to change                                   |         | Level  |
| Cal State        | Calibration  | Idle         | Normal operation                                   | Idle    | Conf   |
|                  | state of the | Lo-0mv       | Low input calibration for mV ranges                |         | L3 R/O |
|                  | input        | Hi-50mV      | High input calibration for mV ranges               |         |        |
|                  |              | Lo-0v        | Low input calibration for V/Thermocouple ranges    |         |        |
|                  |              | Hi-8V        | High input calibration for V/thermocouple ranges   |         |        |
|                  |              | Lo-0v        | Low input calibration for HZ Volts range           |         |        |
|                  |              | Hi-1V        | High input calibration for HZ Volts range          |         |        |
|                  |              | Lo-150ohm    | Low input calibration for RTD range                |         |        |
|                  |              | Hi-400ohm    | High input calibration for RTD range               |         |        |
|                  |              | Load Fact    | Restore factory calibration values                 |         |        |
|                  |              | Save User    | Save the new calibration values                    |         |        |
|                  |              | Confirm      | To start the calibration procedure when one of the |         |        |
|                  |              |              | above has been selected                            |         |        |
|                  |              | Go           | Starting the automatic calibration procedure       |         |        |
|                  |              | Busy         | Calibration in progress                            |         |        |
|                  |              | Passed       | Calibration successful                             |         |        |
|                  |              | Failed       | Calibration unsuccessful                           |         |        |

The following table lists the parameters available in the Calibration List.

The above list shows the parameters which appear during a normal calibration procedure. The full list of possible values follows - the number is the enumeration for the parameter.

### 1: Idle

- 2: Low calibration point for Volts range
- 3: High calibration point for Volts range
- 4: Calibration restored to factory default values
- 5: User calibration stored
- 6: Factory calibration stored
- 11: Idle
- 12: Low calibration point for HZ input
- 13: High calibration point for the HZ input
- 14: Calibration restored to factory default values
- 15: User calibration stored
- 16: Factory calibration stored
- 20: Calibration point for factory rough calibration

21: Idle

- 22: Low calibration point for the mV range
- 23: Hi calibration point for the mV range
- 24: Calibration restored to factory default values
- 25: User calibration stored
- 26: Factory calibration stored

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

- 30: Calibration point for factory rough calibration
- 31: Idle
- 32: Low calibration point for the mV range
- 33: High calibration point for the mV range
- 34: Calibration restored to factory default values
- 35: User calibration stored
- 36: Factory calibration stored
- 41: Idle
- 42: Low calibration point for RTD calibration (150 ohms)
- 43: Low calibration point for RTD calibration (400 ohms)
- 44: Calibration restored to factory default values
- 45: User calibration stored
- 46: Factory calibration stored
- 51: Idle
- 52: CJC calibration used in conjunction with Term Temp parameter
- 54: Calibration restored to factory default values
- 55: User calibration stored
- 56: Factory calibration stored
- 200: Confirmation of request to calibrate
- 201: Used to start the calibration procedure
- 202: Used to abort the calibration procedure
- 210: Calibration point for factory rough calibration
- 212: Indication that calibration is in progress
- 213: Used to abort the calibration procedure
- 220: Indication that calibration completed successfully
- 221: Calibration accepted but not stored
- 222: Used to abort the calibration procedure
- 223: Indication that calibration failed

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

## 26. CHAPTER 26 CONFIGURATION USING ITOOLS

An introduction to using iTools to configure 3500 series instruments is given in the User Guide supplied with your controller. This chapter explains the features in more detail. Any configuration of the instrument which has been described so far through the user interface can be done using iTools. iTools also allows additional features to be configured.

## 26.1 Features

- Parameter Set up
- Device Operation
- Device Recipe
- Program Editing
- Configuration of User Pages
- Graphical Wiring
- Cloning

## 26.2 On-Line/Off-line Editing

If you open the editor on a real device then all the changes you make will be written to the device immediately. All the normal instrument rules apply so you will be able to make the same changes to the programmer of a running instrument that you could make using its front panel.

If you open a program file or open the Programmer Editor on a simulation you will need to save the program or send it to a real device.

Offline programming is actually done using an instrument simulation that can hold as many programs as a real instrument. If you wish to create a set of programs which will all be used in a single instrument you can create a new program and then change the program number using the spin control and edit another program. Each program must be saved separately. If you make a change to one program and switch to another program you will be prompted to save that program.



Aug-04

## 26.3 Connecting a PC to the Controller

The controller may be connected to the PC running iTools using the RS232 or RS485 communications digital communications ports H or J as shown in section 1.7.1. Alternatively, using the IR clip or configuration clip as shown in section 13.2..

Open iTools and, with the controller connected, press on the iTools menu bar. iTools will search the communications ports and TCPIP connections for recognisable instruments. Controllers connected with the configuration clip (CPI), will be found at address 255 regardless of the address configured in the controller.

The iTools handbook, part no. HA026179, provides further step by step instructions on the general operation of iTools. This and the iTools software may be downloaded from <u>www.eurotherm.co.uk</u>.

In the following pages it is assumed that the user is familiar with these instructions and has a general understanding of Windows.

Part No HA027988 Issue 3.0 Aug-04



## 26.4 Parameter Set Up

Allows parameters to be configured.

- 1. Press Parameter Explorer to get this view
- 2. Open up the parameter list by double clicking the required folder. Right click in the parameter list to reveal or hide columns.
- 3. To change the value of a parameter, double click the parameter and change its value using the pop-up window
- 4. The 'Access' button puts the controller into configuration mode. In this mode the controller can be set up without its outputs being active. Press 'Access' again to return to operating level.
  - 5. The instrument view is optional. Select 'Panel Views' in the 'View' menu.
  - 6. To find a parameter select the 'Find' tab



#### The example above shows how to enable an alarm



Issue 3.0

Aug-04

Part No HA027988

210.

## 26.5 Device Panel

Press Device Panel for this feature. The Panel displays the active instrument panel. This can be used for remote viewing, diagnostics or Training. iTools can be used OFF-LINE to configure the product. The panel view gives an indication of how the instrument will appear when the configuration is downloaded.



The front panel control buttons, shown in the Device Panel display, are active and clicking on them with the mouse will cause the display to behave as a real instrument.

© Clicking on the Page button with Ctrl pressed emulates pressing the page and scroll buttons together.

Part No HA027988 Issue 3.0 Aug-04



## 26.6 User Pages Editor

Up to 8 User Pages with a total of 64 lines can be created and downloaded into the controller so that the controller display shows only the information which is of interest to the user.



## 26.6.1 To Create a User Page

|                        | Style                                                   |     |
|------------------------|---------------------------------------------------------|-----|
|                        | Text                                                    |     |
| ?                      | Conditional Text                                        |     |
|                        | Value Only                                              |     |
|                        | Split Row                                               |     |
|                        | Single Row                                              |     |
|                        | Dual Row                                                |     |
|                        | Triple Row                                              |     |
| <u></u>                | Left origin Bar                                         |     |
|                        | Centre origin Bar                                       |     |
| 10                     | Bar Graph Title 1                                       |     |
|                        | Bar Graph Title 2                                       |     |
| Descriptio             | on                                                      | - 3 |
| Parameter<br>displayed | r name (or user text) and value are<br>on the same row. |     |
| 1                      | OK Cancel                                               |     |

- 1. Press Page: 1 to select the page number, 1 to 8
- 2. Double click in the table to the right of the instrument display
- 3. The pop up window shows a list of styles
- 4. Choose the style then select the parameter from the pop up list. To enter user text (where applicable) either right click or double click under 'User Text'. If the style is text only you will be prompted to enter this as soon as the style is selected.
- 5. Right click in the list to:
  - a. Insert an item
  - b. Remove an item
  - c. Edit Wire. Allows you to change the parameter selected
  - d. Edit Text. Allows you to enter your own text for the parameter displayed
- e. Edit Style. This is shown in the pop up window
- f. Read Parameter Properties
- g. Open Parameter Help
- 5. Select the operator level at which the user page will be displayed
- 6. If a bar graph is displayed set the low and high graph axes

The format of the user page is shown in the instrument view

The user page can now be saved and downloaded to the instrument.

| Selecte | ed Pag | je    |        |
|---------|--------|-------|--------|
| Items:  | 0      |       |        |
| Level:  | Lev    | el 1  | •      |
| Graph L | .ow    | Graph | High 🔳 |
| 0.0     | 00     | 0     | .00    |



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

212.

#### 26.6.2 **Style Examples**

The following examples show the controller display produced for each individual style entered.

| Select Ite        | m Style          | Action                                                                                                                                                                                                                                                                                                                                                                           | Controller Display                         |
|-------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 1. T              | ext              | Text entered will appear on the first line of the controller display. E.g.         Style       List       Parameter       User Text         Image: Controller display       Primary Process         Further lines of text may be added. Up to four lines will be shown on the controller display at any time.       Use for to scroll through the text on the controller display | TSOLOO 100 100 100 100 1000 1000 1000 1000 |
| 2.                | Conditional Text | Text entered will only be shown if a condition is true. e.g         Style       List         Parameter       User Text         Interview       Too Hot         The text only appears when the logic input on LA is true                                                                                                                                                          | [ <b>6 14.66</b> <sup></sup><br>™          |
| 3.                | /alue Only       | The value of the chosen parameter will be displayed in the first and subsequent rows. E.g.         Style       List         List       Parameter         Loop.1.Main       PV         This style does not have user text                                                                                                                                                         | ∫<br>→750.00 <sup>™</sup><br>↔750.00       |
| 4. <b>•••••</b> S | plit Row         | The value of a parameter may be displayed to<br>the left and to the right of the controller<br>display. The following example shows the entry<br>set up for digital inputs LA and Lb<br>Style List Parameter User Text<br>IO.Lgcto.LB PV LA                                                                                                                                      | <b>∃6.2 ∫</b> <sup>™</sup><br>≠∞ 1         |
| 5. <b>D</b>       | ual Row          | The value of a parameter and a user defined<br>label may be displayed on two lines of the<br>controller display. The following example<br>shows the entry set up for digital inputs LA and<br>Lb           Style         List         Parameter         User Text           IO.LgctO.LB         PV         LA           IO.LgctO.LA         PV         LB                        |                                            |
| 6. See Note 1     | riple Row        | The description can be up to 20 characterslong and is spread between the first two lineson the display. The parameter value appearson the third line.StyleListParameterUser TextLigtIn1Up to 16 characters                                                                                                                                                                       | UP to 16 charact<br>ers<br>#3              |

Aug-04 Part No HA027988 Issue 3.0



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

| 7.  | Left origin Bar   | This places a bar graph to the left of the display<br>with user text to the right. Keep the user text<br>length to a minimum.<br>Style List Parameter User Text<br>Do not forget to set up the Graph Low and<br>High limits                                                                                                                                          |                 |
|-----|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 8.  | Centre origin Bar | This places a bar graph with centre origin to<br>the left of the display with user text to the<br>right. Keep the user text length to a minimum.<br>Style List Parameter User Text<br>Loop.1.Diag Error Error<br>Do not forget to set up the Graph Low and<br>High limits                                                                                            |                 |
| 9.  | Bar Graph Title 1 | This adds Text, Graph Low and High Limits only.         If this is associated with a parameter the name of the parameter is used as the text. The text is truncated if too long         It is necessary to add the bar graph as a separate item.         Style       List         Parameter       User Text         List       Parameter         Loop.1.SP       SP1 | • Pressure 1000 |
| 10. | Bar Graph Title 2 | This adds centre zero value (0.00) to the bar<br>graph plus text. The display will show graph<br>limits, text and the parameter value. If this<br>takes up too many characters then priority is<br>given first to the value, then to the text, then<br>to the limits.<br>Style List Parameter User Text<br>List Parameter User Text<br>Loop.1.Diag Error Err         | Err 17.00       |

Note 1:- A user page is produced by adding styles one after another. Generally this can be made in any order. However, the default style of 3500 series displays is to show a heading in the first line of the alpha numeric section, followed by a list of parameters and their descriptions - the scroll button being used in operator mode to select parameters. When producing a user page, it is recommended that this default style is followed avoid confusion during operation.

In the case of a Triple Line display, if this placed as the first item in the user page, the first line (of user text) takes up the title space. If another Triple Line style follows this you will be unable to scroll to this in operator mode. To avoid this make the first line a title (using 'Text' style).

Aug-04

## 26.7 Recipe Editor

Press BorDevice Recipe for this feature. Up to 8 recipes can be stored. They can also be named by the user. Recipes allow the operator to change the operating values of up to 24 parameters in an instrument for different batch items/processes by simply selecting a particular recipe to load. Recipes are important for reducing error in setup and they remove the need for operator instructions fixed to the panel next to the instrument.

The Recipe Editor is used during configuration to assign the required parameters and to set up the values to be loaded for each recipe.

| Jser De<br>/alue N            | fined As<br>ame Pa                      | signed<br>arameter                                           |                                                                                             | U                                                | ser Defined<br>ecipe Name                          | Configured<br>Value                                                      |                                                      |                                    |
|-------------------------------|-----------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------|------------------------------------|
| COM                           | 2.ID001-35                              | 08-F029 - Dev                                                | ice Recipe Editor                                                                           |                                                  |                                                    |                                                                          | ×                                                    | Configured Load<br>In Access Level |
| Tag                           | List                                    | Parameter                                                    | Description                                                                                 | Value 🔺                                          | Blue                                               | _Red G                                                                   | reen 🛋                                               |                                    |
| FrgtSP<br>28<br>Ti<br>Td      | Loop.1.Main<br>Loop.1.PID<br>Loop.1.PID | TargetSP<br>ProportionalBa<br>IntegralTime<br>DerivativeTime | Target Setpoint<br>nd Proportional Band<br>Integral Time<br>Derivative Time                 | 0.000000<br>15.000000<br>300.000000<br>50.000000 | 200.000000<br>20.000000<br>360.000000<br>60.000000 | 250.000000 255.0<br>12.000000 12.0<br>240.000000 240.0<br>40.000000 40.0 | 00 Load Access<br>00 Edit Data Se<br>00 Clear Data S | Level - Level1 (0)<br>t Value      |
| Ch2Gain<br>CB-high<br>CB-low  | Loop.1.PID<br>Loop.1.PID<br>Loop.1.PID  | RelativeCh2Ga<br>CutbackHigh<br>CutbackLow                   | in Relative Cool/Ch2 Gain<br>Cutback High<br>Cutback Low                                    | 1.500000<br>Auto (0)<br>Auto (0)                 | 1.100000<br>Auto (0)<br>Auto (0)                   | 1.000000 1.0<br>A                                                        | 001<br>Rename Dat<br>100 🖉 Clear Data S              | a Set<br>et                        |
| Low Alm<br>High Alm<br>Tag 10 | Alerm.1<br>Alerm.2                      | Threshold<br>Threshold                                       | Threshold<br>Threshold                                                                      | 0.000000                                         | 180.000000<br>220.000000                           | 230.000000 235.0<br>270.000000 275.0                                     | Copy Data S                                          | lues<br>iet                        |
| Tag 12<br>Tag 13              |                                         | 6                                                            | Save                                                                                        |                                                  |                                                    |                                                                          | Paste Data d                                         | 194                                |
| Tag14<br>Tag15<br>Tag16<br>∢  |                                         | <u> </u>                                                     | Collete Parameter<br>Edit Parameter Value<br>Rename Parameter Tag<br>Parameter Properties S | Shift+F1                                         |                                                    |                                                                          | -                                                    |                                    |
|                               |                                         |                                                              | Copy Parameter<br>Paste Parameter                                                           | Ctrl+C<br>Ctrl+V                                 | Lo                                                 | oad Disabled                                                             |                                                      |                                    |
|                               |                                         |                                                              | Columns                                                                                     |                                                  |                                                    |                                                                          |                                                      |                                    |

Part No HA027988 Issue 3.0 Aug-04


## 26.7.1 Recipe Menu Commands

| Load Recipe                                     | Used to load a recipe file into the instrument                                                                                                                         |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Save                                            | Used to save the current recipe configuration into a file                                                                                                              |
| Edit Parameter                                  | Used to assign a parameter to a Tag. Parameters can also be assigned by 'drag and drop' from the iTools parameter list                                                 |
| Delete Parameter                                | Used to delete an assigned parameter from the recipes                                                                                                                  |
| Edit Parameter<br>Value                         | Used to edit the current value of the assigned parameter                                                                                                               |
| Rename Parameter<br>Tag                         | Allows the user to rename the Tag of the associated parameter. This tag is used on the instrument to identify assigned parameters (default Value1 - Value24)           |
| Parameter<br>Properties                         | Used to find the properties and help information of the selected parameter                                                                                             |
| Copy Parameter                                  | Used to copy the currently selected parameter                                                                                                                          |
| Paste Parameter                                 | Used to assign a previously copied parameter to the selected Tag                                                                                                       |
| Columns                                         | Used to hide/show the Description and Comment Columns                                                                                                                  |
| Load Access Level                               | Used to configure the lowest access level in which the selected recipe is allowed to load                                                                              |
| Level1                                          | Permitted to load when the instrument is in any of the access levels                                                                                                   |
| Level2                                          | Permitted to load when the instrument is in Level2, Level3 or Config access levels                                                                                     |
| Level3                                          | Permitted to load when the instrument is in Level3 or Config access levels                                                                                             |
| Config                                          | Permitted to load when the instrument is in the Config access level                                                                                                    |
| Never                                           | Never permitted to load                                                                                                                                                |
| Note: Over comms, wh<br>Levels 1, 2 and 3 can b | ilst the instrument is in operator mode, recipes that have been configured to load in e loaded. Whilst the instrument is in Config mode all recipes can be loaded.     |
| Edit Data Set<br>Value                          | Used to edit the value of the selected assigned parameter within the selected recipe.<br>Values can also be edited via double left clicking the value itself           |
| Clear Data Set<br>Value                         | Used to clear the value of the selected assigned parameter within the selected recipe, thus disabling it from loading when the recipe is selected to load              |
| Rename Data Set                                 | Allows the user to rename the selected recipe. This name is used to identify individual recipes (default Set1 - Set8). Note: Number of recipes dependent upon features |
| Clear Data Set                                  | Used to clear all values in the selected recipe, thus disabling all from loading when the recipe is selected to load                                                   |
| Snapshot Values                                 | Used to copy all of the assigned parameters current values into the selected recipe                                                                                    |

216.

Copy Data Set

Paste Data Set

Used to copy all values of the selected recipe

Used to paste all values of a previously copied recipe into the selected recipe

## 26.8 To Set up Alarms Using iTools

## 26.8.1 Example: To Customise Analogue Alarm Messages

- a. Connect the controller to iTools as described in the iTools User Handbook part no HA026179. This may be downloaded from www.eurotherm.co.uk.
- b. Double click on the **'Alarm'** folder to display the Parameter Explorer. With the controller in configuration mode double click **'Message**' and enter a name for the alarm. This name will be displayed on the controller when the alarm occurs. This is shown in the simulation below.
- c. If the alarm has not been set up, then, with the controller in configuration level, double click on '**Type**' and select the alarm type from the pull down menu.
- d. Repeat for all other parameters. Parameters shown in blue are not alterable in the current operating level of the instrument.





Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

## 26.8.2 Alarm Summary Page in iTools

Click on the folder '**AlmSummary**'. A list of alarm states is displayed. In the view below the Limits column and Comment column have been opened by right clicking in the parameter list and selecting '**Columns'** in the drop down menu.

To add a comment, select 'Add Parameter Comment' from the same drop down and enter the required text.

| 🖏 iTools                                |                               |                                                        |                     | _ 🗆 🗙              |  |
|-----------------------------------------|-------------------------------|--------------------------------------------------------|---------------------|--------------------|--|
| <u>File Device Explorer View</u>        | Options Window                | Help                                                   |                     |                    |  |
| New File Open File Load                 | Save Print                    | Scan Add Remove Acces                                  | Q .<br>Views        |                    |  |
| 🖽 Parameter Explorer 🛛 🖽 D              | <u>e</u> vice Panel 🛛 💀 🖓 Dev | ice <u>R</u> ecipe 🛛 W <u>a</u> tch/Recipe 🛛 🔀 Program | nmer 🛛 🛄 User Pages | 🔁 Graphical Wiring |  |
| ×  [                                    | iii anataladas                | Development (Alex Comments)                            |                     |                    |  |
|                                         |                               | Parameter Explorer (AlmSummary)                        |                     |                    |  |
| Cuntitled 1>                            | (+ - + - E                    |                                                        |                     | - <u>1</u>         |  |
|                                         | Name                          | Description                                            | Address .           | Value              |  |
|                                         | NewAlarm                      | New Alarm Notification                                 | 27844               | No (0)             |  |
|                                         | AnuAlarm                      | Any Alarm Notification                                 | 27845               | Yes (1)            |  |
| 🕀 🧰 Access 🔺                            | GlobalAck                     | Global Acknowledge of All Alarms                       | 27846               | No (0)             |  |
| 🗄 💼 Instrument 🔤 🚺                      | AnAlarmBute                   | Analogue Alarms Summary Byte                           | 27847               | 5461               |  |
| 🗄 🛅 Recipe                              | DigAlarmBute                  | Digital Alarms Summary Byte                            | 27848               | 0                  |  |
| і — По                                  | SBrkAlarm                     | Sensor Break Alarm Summary                             | 27895               | ō II               |  |
| Alarm                                   | AnAlarm1State                 | Active (7)                                             |                     |                    |  |
|                                         | AnAlarm1Ack                   | AnAlarm1Ack Analogue Alarm 1 Acknowledge 27850         |                     |                    |  |
|                                         | AnAlarm2State                 | Analogue Alarm 2 State                                 | 27851               | Active (7)         |  |
| ÷ • • • • • • • • • • • • • • • • • • • | AnAlarm2Ack                   | Analogue Alarm 2 Acknowledge                           | 27852               | No (0)             |  |
|                                         | AnAlarm3State                 | Analogue Alarm 3 State                                 | 27853               | Active (7)         |  |
|                                         | AnAlarm3Ack                   | Analogue Alarm 3 Acknowledge                           | 27854               | No (0)             |  |
|                                         | AnAlarm4State                 | Analogue Alarm 4 State                                 | 27855               | Active (7)         |  |
|                                         | AnAlarm4Ack                   | Analogue Alarm 4 Acknowledge                           | 27856               | No (0)             |  |
|                                         | AnAlarm5State                 | Analogue Alarm 5 State                                 | 27857               | Active (7)         |  |
|                                         | AnAlarm5Ack                   | Analogue Alarm 5 Acknowledge                           | 27858               | No (0)             |  |
| AlmSummary                              | AnAlarm6State                 | Analogue Alarm 6 State                                 | 27859               | Active (7)         |  |
| E BCDInput                              | AnAlarm6Ack                   | Analogue Alarm 6 Acknowledge                           | 27860               | No (0)             |  |
| E Comms                                 | AnAlarm7State                 | Analogue Alarm 7 State                                 | 27861               | Active (7)         |  |
| E Counter                               | AnAlarm7Ack                   | Analogue Alarm 7 Acknowledge                           | 27862               | No (0) 💌           |  |
| 🗄 🛅 DigAlarm 🔤 🚺                        | AlmSummary -                  | 52 parameters                                          |                     |                    |  |
|                                         |                               |                                                        |                     |                    |  |
|                                         |                               |                                                        |                     |                    |  |
| Level 2 (Engineer)                      | 3504 v. E0.38                 |                                                        |                     |                    |  |

Figure 26-2: Alarm Summary Page



#### 26.8.3 **To Customise Digital Alarm Messages**

The procedure is the same as for analogue alarms using the 'DigAlarm' folder.

| 💖 iTools                         |                                          |                                    |                        |                 |
|----------------------------------|------------------------------------------|------------------------------------|------------------------|-----------------|
| <u>File Device Explorer View</u> | Options <u>W</u> indow <u>H</u> elp      |                                    |                        |                 |
|                                  | 🖬 🎒 🖡                                    | - ① ×   ⑧                          | Q .                    |                 |
| New File Open File Load          | Save Print Scan                          | Add Remove Acce                    | ss views               |                 |
| Parameter Explorer               | Device Panel 60'Device Recipe            | Convector Adams                    | ammer 🛄 User Pages 🕀 G | raphical wiring |
| <u> </u>                         | 🔠 <untitled 1=""> - Parameter</untitled> | Explorer (DigAlarm)                |                        | <b>_</b>        |
| CUntitled 1>                     |                                          | •                                  |                        |                 |
|                                  | 1 2 3 4                                  | 5 6 7 8                            |                        |                 |
|                                  | Name Description                         | Address Value                      | Lo Limit Hi Limit Co   | mment           |
| Access                           | Type Alarm Type                          | 27896 Door Open<br>27916 High (12) | None (8) Low (13)      |                 |
| ±                                | In Alarm Input                           | 27917 On (1)                       | Off (0) On (1)         |                 |
| IO IO                            | Uut Uutput<br>Inhibit Inhibit            | 27918 Un (1)<br>27919 No (0)       | Message (read-only)    | X               |
| Harm Alarm                       | Latch Latch                              | 27920 None (0)                     |                        |                 |
| E BCDInput                       | Ack Alarm Acknowledge                    | e 27921 No (0)<br>27922 No (0)     | Current Value          |                 |
| E Comms                          | Priority Priority                        | 27923 Med (2)                      | New Value Door         | Open            |
|                                  | Delay Delay in Seconds                   | 27924 0                            | New Value 1000         | opol            |
| Humidity                         |                                          |                                    |                        |                 |
| IPMonitor                        |                                          |                                    |                        |                 |
|                                  | •                                        |                                    |                        |                 |
| AD97<br>AD97<br>Door<br>Press    | EUROTHERM                                |                                    |                        |                 |
| Level 2 (Engineer)               | 3504 v. E0.38                            |                                    |                        |                 |

Figure 26-4: Configuring Digital Alarm Messages using iTools

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

## 26.9 Program Editor

ITools provides a convenient method of entering and editing programs directly in the controller. Setpoint programs can be created graphically, stored and downloaded into the controller.

## 26.9.1 Analog View

This view is used for editing the analog setpoints. The event outputs are displayed using dots in the digital output row and are not editable. Hold the mouse pointer over the digital setpoint cell and a tooltip pops up showing the number, name and value of each of the digitals.

- From the iTools menu select 'Program Editor'.
- 1. Press Herogrammer to edit the analog setpoints
- 2. Select a program number using Program:
- 3. Double click **Program Name** and enter a name for the program
- 4. Right click in the blank area and choose 'Add Segment'
- 5. Select 'Segment Type' from the drop down and enter the segment details
- 6. Repeat for all required segments



#### 26.9.1.1 Step

The trace steps from the old to the new value half way through the segment display.

#### 26.9.1.2 Ramp

The point at which the ramp will reach the target is calculated and the ramp is plotted from the start of the segment to this point.

### 26.9.1.3 Dwell

Jumps to the dwell target at the start of the segment and stays there.

#### 26.9.1.4 Call

Shows the profile of the called program compressed to fit in one segment. If the called program calls another program it is treated as a dwell.

The graph has a context menu with one entry - 'Copy Chart'. This copies the visible part of the graph onto the clipboard as a Windows Metafile.





#### 26.9.2 **Event Outputs**

These are set in the 'Digital View' as follows:-

- Press 🗠 to select the digital events view. 1.
- Right click in the blank area to 'Add Segment' 2
- Use the pull downs to turn the digital event On or Off in the selected segment 3.

| 🕅 iTools - [ <untitled 1=""> - Program</untitled>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ammer Editor]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hile Device Programmer View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Options Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ & ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| New File Open File Load Save                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a 🞒 🍢 🕂 X 🧭 Q -<br>re Print Scan Add Remove Access Views                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 🖽 Parameter Explorer 🛛 🔠 Device Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Panel 💀 Device Recipe 🔝 Watch/Recipe 🖂 programmer 🛄 User Pages 🕢 Graphical Wiring 🛛 💏 OP⊆ Scope 🔐 Device Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 떠는                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | am Name<br>e Board<br>put01<br>put02<br>put03<br>put04<br>put05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| BecOpe           B         RecOpe           B         10           Hamman         Becomput           B         Comms           B         Counter           B         DigAlarm           B         Humidity           B         Lipodalarm           B         Lipodalarm | 0         1         2         3         4         5         6         7         8         9         10           CallProg         20         20         5         ×         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< td=""><td>94106<br/>94107<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94103<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105<br/>94105</td></td<> | 94106<br>94107<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94103<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105<br>94105 |
| Browse V& Find                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PSP Parameters Program Parameters Segment Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Level 2 (Engineer) 3504 v.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | v. E0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### 26.9.3 The Spreadsheet

The segment values are shown in a spreadsheet format. Each cell either contains a set of enumerated values shown as a drop down list, a numerical value, or a duration.

To change an enumeration either type its numeric value or choose from the drop down list. If the enumeration is for an event output and so only has the values 'On (1)' and 'Off (0)' you can double click the cell to change to the other value.

To change a numeric value, click on the cell and type the new value. It is accepted when you move on to another cell using the 'enter', tab or arrow keys.

To change a duration type it in the format '\_\_h \_\_\_s \_\_\_ms' where \_ is a number. You can leave bits out but if they appear they must be in the order shown. E.g., '1m 30s' is acceptable but '30s 1m' is not.

 If you select and copy spreadsheet cells they are put on the clipboard as tab separated values which can be pasted into Microsoft Excel.

#### 26.9.4 Menu Entries and Tool Buttons

Most of the menu entries documented above have an associated tool button that performs the same action. Hold the mouse over each button to find out what it does.

#### 26.9.5 The Context Menu

There is a context menu on the spreadsheet that has 'Select All', 'Copy', 'Paste Insert', 'Paste Over', 'Insert' and 'Delete' entries. These perform the same actions as those in the Edit menu.

Part No HA027988 Issue 3.0 Aug-04



#### 26.9.6 Naming Programs

The programs can be given names. These names are saved in the program file and as comments in any clone file made from the instrument. The program name is also written to the instrument. To enter a name, either double click the trace label or click the small grey button on it. You can enter up to 16 characters as the name.

#### 26.9.7 Entering a Program

You can connect to a device or load a clone file as you normally would and then select the programmer view using the view button on the toolbar or the context menu for the device.

To create a new program, create a new clone file and start the programmer editor using that clone.

Note that if you need to be able to put the device/simulation into configuration mode this can only be done within iTools.

#### 26.9.8 Making Changes to a Program

There are three tabs along the bottom of the editor, the last one shows the segment data in a graph and a grid. The others show standard iTools lists which are used to set up programmer related parameters for the whole instrument and for the current program. You will only see the parameters that set up instrument wide program parameters if the instrument is in configuration mode.

The 'Segment Parameters' tab is the default and the one where the program itself is edited. To change a numeric value click in the tab, type the new number and enter. To change an enumerated value click on the down arrow button and choose the new value. The segment values are edited 'in place' whereas the iTools parameter lists popup a dialog to change the value.

If you are connected to a device the changes will be written to it immediately. If you created a new program or opened a saved program you will have to save the changes to a file.

#### 26.9.9 **Saving Programs**

The stand alone editor has a 'File Save' menu entry which is used to write the program out to a file. Each program is saved in a separate file. If you wish to clone all of the programs from one instrument to another you will have to use the iTools cloning facilities to do this.

When using the editor within iTools, there is an entry on the Programmer menu for saving programs.

### 26.9.10 Moving Programs Around

The 'File Send To' menu entry can be used to copy a program to a connected instrument. A dialog pops up in which you have to select the instrument and the destination program number. You can use this to copy programs within the same instrument or to open a program file and download it.

### 26.9.11 Printing a Program

There is no direct printing support in the Programmer Editor, but you can generate a report using Microsoft Excel as follows:

- Right click on the graph and choose 'Copy Chart'. •
- Open a new spreadsheet in Excel and paste the chart, position to taste.
- Go back to the Programmer Editor and Choose 'Edit|Select All' followed by 'Edit|Copy'. •
- Switch to Excel, choose the top left cell for the segment data and then choose 'Edit | Paste'.
- Optionally delete any columns that have no settings and format the cells. •
- Print the spreadsheet.

The program is listed down rather than across the page so long programs can be printed.

Fax: 03 26 85 19 08, Tel : 03 26 82 49 29



## 26.10 Graphical Wiring Editor

Select Graphical Wiring (GWE) to view and edit instrument wiring. You can also add comments and monitor parameter values.

- 1. Drag and drop required function blocks into the graphical wiring from the list in the left pane
- 2. Click on parameter to be wired from and drag the wire to the parameter to be wired to (do not hold mouse button down)
- 3. Right click to edit parameter values
- 4. Select parameter lists and switch between parameter and wiring editors
- 5. Download to instrument when wiring completed
- 6. Add comments and notes
- 7. Dotted lines around a function block show that the function requires downloading



Graphical Wiring Toolbar



The following terms are used:

#### 26.10.1.1 Function Block

A Function Block is an algorithm which may be wired to and from other function blocks to make a control strategy. The Graphical Wiring Editor groups the instrument parameters into function blocks. Examples are: a control loop and a mathematical calculation.

Each function block has inputs and outputs. Any parameter may be wired from, but only parameters that are alterable may we wired to.

A function block includes any parameters that are needed to configure or operate the algorithm.

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

#### 26.10.1.2 Wire

A wire transfers a value from one parameter to another. They are executed by the instrument once per control cycle.

Wires are made from an output of a function block to an input of a function block. It is possible to create a wiring loop, in this case there will be a single execution cycle delay at some point in the loop. This point is shown on the diagram By a || symbol and it is possible to choose where that delay will occur.

#### 26.10.1.3 Block Execution Order

The order in which the blocks are executed by the instrument depends on the way in which they are wired.

The order is automatically worked out so that the blocks execute on the most recent data.

#### 26.10.2 Using Function Blocks

If a function block is not faded in the tree then it can be dragged onto the diagram. The block can be dragged around the diagram using the mouse.

A labelled loop block is shown here. The label at the top is the name of the block.

When the block type information is alterable click on the box with the arrow in it on the right to edit that value.

The inputs and outputs which are considered to be of most use are always shown. In most cases all of these will need to be wired up for the block to perform a useful task. There are exceptions to this and the loop is one of those exceptions.

If you wish to wire from a parameter which is not shown as a recommended output click on the icon in the bottom right and a full list of parameters in the block will be shown, click on one of these to start a wire.

To start a wire from a recommended output just click on it.

Click 'Select Output' to wire new parameters

#### 26.10.2.1 Function Block Context Menu

The function block context menu has the following entries:-

| Function<br>Block View      | Brings up an iTools parameter list which shows<br>all the parameters in the function block. If the<br>block has sub-lists these are shown in tabs                                           |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Re-Route<br>Wires           | Throw away current wire route and do an auto-<br>route of all wires connected to this block                                                                                                 |
| Re-Route<br>Input Wires     | Only do a re-route on the input wires                                                                                                                                                       |
| Re-Route<br>Output<br>Wires | Only do a re-route on the output wires                                                                                                                                                      |
| Сору                        | Right click over an input or output and copy<br>will be enabled, this menu item will copy the<br>iTools "url" of the parameter which can then<br>be pasted into a watch window or OPC Scope |
| Delete                      | If the block is downloaded mark it for delete, otherwise delete it immediately                                                                                                              |
| Undelete                    | This menu entry is enabled if the block is marked for o                                                                                                                                     |

| Loob                |                |
|---------------------|----------------|
| PID (2)             | ) 🗖            |
| Off (0)             | T              |
| Main.AutoMan        | Main.PV        |
| Main.PV             | Main.WorkingSP |
| Tune.AutotuneEnable | OP.Ch1Out      |
| SP.SPSelect         |                |
| SP.SP1              |                |
| SP.SP2              |                |
| SP.AltSPSelect      |                |
| SP.AltSP            |                |
| SP.SPTrim           |                |
| OP.ManualMode       |                |
| OP.ManualOutVal     |                |
| 2                   | 0              |

| 1 | Function Block View   |
|---|-----------------------|
| F | Re-Route Wires        |
| F | Re-Route Input Wires  |
| F | Re-Route Output Wires |
| ( | Сору                  |
| [ | Delete                |
| l | Jndelete              |
| E | Bring To Front        |
| F | Push To Back          |
| E | Edit Parameter Value  |
| F | Parameter Properties  |
| ł | Help                  |

delete This menu entry is enabled if the block is marked for delete and unmarks it and any wires connected to it for delete

2 rue René Laennec 51500 Taissy France

Fax: 03 26 85 19 08, Tel : 03 26 82 49 29



| Bring To<br>Front          | Bring the block to the front of the diagram. Moving a block will also bring it to the front                                                                                                                                   |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Push To Back               | Push the block to the back of the diagram. Useful of there is something underneath it                                                                                                                                         |
| Edit<br>Parameter<br>Value | This menu entry is enabled when the mouse is over an input or output parameter. When selected it creates a parameter edit dialog so the value of that parameter can be changed                                                |
| Parameter<br>Properties    | Selecting this entry brings up the parameter properties window. The parameter properties window is updated as the mouse is moved over the parameters shown on the function block                                              |
| Help                       | Selecting this entry brings up the help window. The help window is updated as the mouse is moved over the parameters shown on the function block. When the mouse is not over a parameter name the help for the block is shown |

### 26.10.3 Tooltips

Hovering over different parts of the block will bring up tooltips describing the part of the block beneath the mouse.

If you hover over the parameter values in the block type information a tooltip showing the parameter description, it's OPC name, and, if downloaded, it's value will be shown.

A similar tooltip will be shown when hovering over inputs and outputs.

#### 26.10.4 Series 3000 Instruments

The blocks in a series 3000 instrument are enabled by dragging the block onto the diagram, wiring it up, and downloading it to the instrument

When the block is initially dropped onto the diagram it is drawn with dashed lines.

When in this state the parameter list for the block is enabled but the block itself is not executed by the instrument.

Once the download button is pressed the block is added to the instrument function block execution list and it is drawn with solid lines.

| Aları     | n 1    |
|-----------|--------|
| None      | (0) 🐼  |
| Input     | Output |
| Threshold | 4 E    |
| Inhibit   |        |
| Ack       |        |
| 5         | D      |

. . . . . . . . . . . . . . . . . . . .



Alarm 1 None (0) Input Output Threshold Inhibit Ack 3

If a block which has been downloaded is deleted, it is shown on the diagram in a ghosted form until the download button is pressed.

This is because it and any wires to/from it are still being executed in the instrument. On download it will be removed from the instrument execution list and the diagram. A ghosted block can be undeleted using the context menu.

When a dashed block is deleted it is removed immediately.

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

## 26.10.5 Using Wires

### 26.10.5.1 Making A Wire Between Two Blocks



Drag two blocks onto the diagram from the function block tree.

- Start a wire by either clicking on a recommended output or clicking on the icon at the bottom right corner of the block to bring up the connection dialog. The connection dialog shows all the connectable parameters for the block, if the block has sub-lists the parameters are shown in a tree. If you wish to wire a parameter which is not currently available click the red button at the bottom of the connection dialog. Recommended connections are shown with a green plug, other parameters which are available are yellow and if you click the red button the unavailable parameters are shown red. To dismiss the connection dialog either press the escape key on the keyboard or click the cross at the bottom left of the dialog.
- Once the wire has started the cursor will change and a dotted wire will be drawn from the output to the current mouse position.
- To make the wire either click on a recommended input to make a wire to that parameter or click anywhere except on a recommended input to bring up the connection dialog. Choose from the connection dialog as described above.
- The wire will now be auto-routed between the blocks.

New wires on series 3000 instruments are shown dotted until they are downloaded

#### 26.10.5.2 Wire Context Menu

The wire block context menu has the following entries on it.

|                  | The wire block context menu has the following entries on it. |                                                                                                                                                                                                                                                                                 |                                              |
|------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Force Exec Break |                                                              | If wires form a loop a break point has to be found where the value which is written to the block input comes from a block which was last executed during Use                                                                                                                    | Route Wire                                   |
|                  |                                                              | the previous instrument execute cycle thus<br>introducing a delay. This option tells the instrument<br>that if it needs to make a break it should be on this<br>wire                                                                                                            | :e<br>:lete                                  |
|                  | Re-Route Wire                                                | Throw away wire route and generate an automatic     Bring       route from scratch     Push                                                                                                                                                                                     | To Front<br>To Back                          |
|                  | Use Tags                                                     | If a wire is between blocks which are a long way apart,<br>then rather than drawing the wire, the name of the wired<br>to/from parameter can be shown in a tag next to the<br>block. This menu entry toggles this wire between drawing<br>the whole wire and drawing it as tags | Math26<br>Off(0) I<br>⇒In1 Out<br>In2<br>In2 |
|                  | Delete                                                       | For series 3000 instruments if the wire is downloaded mark it for delete, otherwi it immediately                                                                                                                                                                                | se delete                                    |
|                  | Undelete                                                     | This menu entry is enabled if the wire is marked for delete and unmarks it for de                                                                                                                                                                                               | lete                                         |
|                  | Bring To Front                                               | Bring the wire to the front of the diagram. Moving a wire will also bring it to the                                                                                                                                                                                             | front                                        |
|                  | Push To Back                                                 | Push the wire to the back of the diagram                                                                                                                                                                                                                                        |                                              |

226.

Issue 3.0

Aug-04

Part No HA027988

#### 26.10.5.3 Wire Colours

| Wires | can b | e the | following | colours: |
|-------|-------|-------|-----------|----------|
|       |       |       |           |          |

| Black  | Normal functioning wire.                                                                                                                                                            |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Red    | The wire is connected to an input which is not alterable when the instrument is in operator mode and so values which travel along that wire will be rejected by the receiving block |
| Blue   | The mouse is hovering over the wire, or the block to which it is connected it selected. Useful for tracing densely packed wires                                                     |
| Purple | The mouse is hovering over a 'red' wire                                                                                                                                             |

#### 26.10.5.4 Routing Wires

When a wire is placed it is auto-routed. The auto routing algorithm searches for a clear path between the two blocks. A wire can be auto-routed again using the context menus or by double clicking the wire.

If you click on a wire segment you can drag it to manually route it. Once you have done this it is marked as a manually routed wire and will retain it's current shape. If you move the block to which it is connected the end of the wire will be moved but as much of the path as possible of the wire will be preserved.

If you select a wire by clicking on it, it will be drawn with small boxes on it's corners.

#### 26.10.5.5 Tooltips

Hover the mouse over a wire and a tooltip showing the names of the parameters which are wired and, if downloaded, their current values will also be shown.

#### 26.10.6 Using Comments

Drag a comment onto the diagram and the comment edit dialog will appear.

Type in a comment. Use newlines to control the width of the comment, it is shown on the diagram as typed into the dialog. Click OK and the comment text will appear on the diagram. There are no restrictions on the size of a comment. Comments are saved to the instrument along with the diagram layout information.



Comments can be linked to function blocks and wires. Hover the mouse over the bottom right of the comment and a chain icon will appear, click on that icon and then on a block or a wire. A dotted wire will be drawn to the top of the block or the selected wire segment.

#### 26.10.6.1 Comment Context Menu

The comment context menu has the following entries on it.

| Edit           | Open the comment edit dialog to edit this comment                                                            |
|----------------|--------------------------------------------------------------------------------------------------------------|
| Unlink         | If the comment is linked to a block or wire this will unlink it                                              |
| Delete         | For series 3000 instruments if the comment is downloaded mark it for delete, otherwise delete it immediately |
| Undelete       | This menu entry is enabled if the comment is marked for delete and unmarks it for delete                     |
| Bring To Front | Bring the comment to the front of the diagram. Moving a comment will also bring it to the front              |
| Push To Back   | Push the comment to the back of the diagram. Useful if there is something underneath it                      |

| Edit           |
|----------------|
| Unlink         |
| Delete         |
| Undelete       |
| Bring To Front |
| Push To Back   |

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

#### 26.10.7 Using Monitors

Drag a monitor onto the diagram and connect it to a block input or output or a wire as described in 'Using Comments'.

The current value (updated at the iTools parameter list update rate) will be shown in the monitor. By default the name of the parameter is shown, double click or use the context menu to not show the parameter name.

#### 26.10.7.1 Monitor Context Menu

The monitor context menu has the following entries on it.

| Show Names     | Show parameter names as well as values                                                                       |
|----------------|--------------------------------------------------------------------------------------------------------------|
| Unlink         | If the monitor is linked to a block or wire this will unlink it                                              |
| Delete         | For series 3000 instruments if the monitor is downloaded mark it for delete, otherwise delete it immediately |
| Undelete       | This menu entry is enabled if the monitor is marked for delete and unmarks it for delete                     |
| Bring To Front | Bring the monitor to the front of the diagram. Moving a monitor will also bring it to the front              |
| Push To Back   | Push the monitor to the back of the diagram. Useful if there is something underneath it                      |

#### 26.10.8 Downloading To Series 3000 Instruments

Series 3000 wires have to be downloaded to the instrument together. When the wiring editor is opened the current wiring and diagram layout is read from the instrument. No changes are made to the instrument function block execution or wiring until the download button is pressed. Any changes made using the instrument front panel after the editor is opened will be lost on download.

When a block is dropped on the diagram instrument parameters are changed to make the parameters for that block available. If you make changes and close the editor without saving them there will be a delay while the editor clears these parameters.

When you download, the wiring is written to the instrument which then calculates the block execution order and starts executing the blocks. The diagram layout including comments and monitors is then written into instrument flash memory along with the current editor settings. When you reopen the editor the diagram will be shown positioned the same as when you last downloaded.

### 26.10.9 Selections

Wires are shown with small blocks at their corners when selected. All other items have a dotted line drawn round them when they are selected.

#### 26.10.9.1 Selecting Individual Items

Clicking on an item on the drawing will select it.

#### 26.10.9.2 Multiple Selection

Control click an unselected item to add it to the selection, doing the same on a selected item unselects it.

Alternatively, hold the mouse down on the background and wipe it to create a rubber band, anything which isn't a wire inside the rubber band will be selected.

Selecting two function blocks also selects any wires which join them. This means that if you select more than one function block using the rubber band method any wires between them will also be selected.

Pressing Ctrl-A selects all blocks and wires.



#### 26.10.10 Colours

Items on the diagram are coloured as follows:

| Red    | Function blocks, comments and monitors which partially obscure or are partially obscured by other items are drawn red. If a large function block like the loop is covering a small one like a math2 the loop will be drawn red to show that it is covering another function block. Wires are drawn red when they are connected to an input which is currently unalterable. Parameters in function blocks are coloured red if they are unalterable and the mouse pointer is over them |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blue   | Function blocks, comments and monitors which are not coloured red are coloured blue when the mouse<br>pointer is over them. Wires are coloured blue when a block to which the wire is connected is selected or the<br>mouse pointer is over it. Parameters in function blocks are coloured blue if they are alterable and the mouse<br>pointer is over them                                                                                                                          |
| Purple | A wire which is connected to an input which is currently unalterable and a block to which the wire is                                                                                                                                                                                                                                                                                                                                                                                |

connected is selected or the mouse pointer is over it is coloured purple (red + blue)

## 26.11 Diagram Context Menu

The diagram context menu has the following entries on it:-

| Re-Route<br>Wires | Throw away current wire route and do an auto-route of all selected wires. If no wires are selected this is done to all wires on the diagram                                                                                                                                                                                                                                             |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Align Tops        | Line up the tops of all the selected items except wires                                                                                                                                                                                                                                                                                                                                 |
| Align Lefts       | Line up the left hand side of all the selected items except wires                                                                                                                                                                                                                                                                                                                       |
| Space Evenly      | This will space the selected items such that their top left<br>corners are evenly spaced. Select the first item, then select<br>the rest by control-clicking them in the order you wish them<br>to be spaced, then choose this menu entry                                                                                                                                               |
| Delete            | Delete, or mark for delete (series 3000 instruments) all selected items                                                                                                                                                                                                                                                                                                                 |
| Undelete          | This menu entry is enabled if any of the selected items are marked for delete and unmarks them when selected                                                                                                                                                                                                                                                                            |
| Copy Graphic      | If there is a selection it is copied to the clipboard as a<br>Windows metafile, if there is no selection the whole diagram<br>is copied to the clipboard as a Windows metafile. Paste into<br>your favourite documentation tool to document your<br>application. Some programs render metafiles better than<br>others, the diagram may look messy on screen but it should<br>print well |
| Save Graphic      | Same as Copy Graphic but saves to a metafile rather than putting it on the clipboard                                                                                                                                                                                                                                                                                                    |



Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

## 26.11.1 Other Examples of Graphical Wiring

### Simulated Load

This may be useful as a test to show the action of a closed loop PID controller.



Loop/Programmer Wiring



Note: The wires on this diagram are auto generated if the loop and programmer are enabled and there are no wires connected to the four inputs.



230.

2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

#### Bargraph

| V iTools - [ <untitled 3=""> - Graphical Wiring]</untitled>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - DX             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| E Ele Device Wring Yew Options Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 8 ×            |
| E de Ca Ea A Cas |                  |
| III Parameter Explorer III Device Backe By Device Backe By Watch/Recipe 🔛 By parking I March 10 Parameter Support Wing March 2000 Pargraph Linked to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| Control Contro Control Control Control Control Control Control Control Control Co    | 1, 249 free - 41 |
| Level 2 (Engineer) 3504 v. E0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |

Bargraph with Alarm Values Displayed



Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

## 26.12Cloning

The cloning feature allows the configuration and parameter settings of one instrument to be copied into another. Alternatively a configuration may be saved to file and this used to download to connected instruments. The feature allows new instruments to be rapidly set up using a known reference source or standard instrument. Every parameter and parameter value is downloaded to the new instrument which means that if the new instrument is used as a replacement it will contain exactly the same information as the original. Cloning is generally only possible if the following applies:

- The target instrument has the same hardware configuration as the source instrument
- The target instrument firmware (ie. Software built into the instrument) is the same as or a later version than that of the source instrument. The instrument firmware version is displayed on the instrument when power is applied.

#### /!` It is the users responsibility to ensure that the information cloned from one instrument to another is correct for the process to be controlled, and that all parameters are correctly replicated into the target instrument.

Below is a brief description of how to use this feature. Further details are available in the iTools Handbook

## 26.12.1 Save to File

The configuration of the controller made in the previous sections may be saved as a clone file. This file can then be used to download the configuration to further instruments.

From the File menu use 'Save to File' or use the 'Save' button on the Toolbar.

### 26.12.1.1 Loading a Clone File Using The IR & Config Clips

When iTools is communicating with the instrument via the IR or Config Clips and a clone file is loaded, ALL parameters are cloned, including communications parameters.

This is possible as the actual communications mechanism will not be altered by changing these parameters. The communication mechanism will be fixed within the instrument by the use of these clips, see above.

### 26.12.1.2 Loading a Clone File using 'H'/'J' Port Communications

When iTools is communicating with the instrument via the 'H' or 'J' port and a clone file is loaded, all relevant parameters EXCLUDING the comms parameters will be cloned.

This is necessary to remove the risk of changes in communications settings terminating the communications with iTools during the clone procedure.

## 26.12.2 To Clone a New Controller

Connect the new controller to iTools and Scan to find this instrument as described at the beginning of this chapter.

From the File menu select 'Load Values From File' or select 'Load' from the toolbar. Choose the required file and follow the instruction. The new instrument will be configured to this file.

## 26.12.3 To Clone Directly from One Controller to Another

Connect the second controller to iTools and scan for the new instrument

From the File menu select 'Send to Device'. Select the controller to be cloned and follow the instructions. The old instrument will be configured the same as the new one.



Aug-04

Part No HA027988 Issue 3.0

Part No HA027988 Issue 3.0 Aug-04



Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

# 27. APPENDIX A PARAMETER INDEX

Below is an index of parameters used in the 3500 series controllers. The three columns on the left hand side are sorted by function block and the three columns on the right are sorted alphabetically. Both refer to the section in which the parameters will be found in this issue of the manual.

| Parameters in order of page header |              |         |  |
|------------------------------------|--------------|---------|--|
| Parameter                          | Page Header  | Section |  |
|                                    | Access       |         |  |
| Goto                               | Access       | 2.2     |  |
| Level2 Code                        | Access       | 2.2     |  |
| Level3 Code                        | Access       | 2.2     |  |
| Config Code                        | Access       | 2.2     |  |
| IR Mode                            | Access       | 2.2     |  |
| Customer ID                        | Access       | 2.2     |  |
| Keylock                            | Access       | 2.2     |  |
| Standby                            | Access       | 2.2     |  |
| A/Man Func                         | Access       | 2.2     |  |
| Run/Hold Func                      | Access       | 2.2     |  |
|                                    | Inst Options |         |  |
| Math2 En1                          | Inst Options | 5.3     |  |
| Timer En                           | Inst Options | 5.3     |  |
| Loop En                            | Inst Options | 5.3     |  |
| Load En                            | Inst Options | 5.3     |  |
| AnAlm En                           | Inst Options | 5.3     |  |
| DgAlm En                           | Inst Options | 5.3     |  |
| IO Exp En                          | Inst Options | 5.3     |  |
| Poly En                            | Inst Options | 5.3     |  |
| Progr En                           | Inst Options | 5.3     |  |
| Lin16Pt En                         | Inst Options | 5.3     |  |
| IP Mon En                          | Inst Options | 5.3     |  |
| SwOver En                          | Inst Options | 5.3     |  |
| Totalise En                        | Inst Options | 5.3     |  |
| TrScale En                         | Inst Options | 5.3     |  |
| BCDIn En                           | Inst Options | 5.3     |  |
| Mux8 En                            | Inst Options | 5.3     |  |
| RTClock En                         | Inst Options | 5.3     |  |
| Counter En                         | Inst Options | 5.3     |  |
| Lgc2 En1                           | Inst Options | 5.3     |  |
| Lgc2 En2                           | Inst Options | 5.3     |  |
| Lgc2 En3                           | Inst Options | 5.3     |  |
| Lgc8 En                            | Inst Options | 5.3     |  |
| Math2 En2                          | Inst Options | 5.3     |  |
| Math2 En3                          | Inst Options | 5.3     |  |

| Parameters in alphabetical order |                    |         |  |
|----------------------------------|--------------------|---------|--|
| Parameter                        | Page Header        | Section |  |
| Α                                |                    |         |  |
| A/Man Func                       | Access             | 2.2     |  |
| Ack                              | AnAlm 1 to 16      | 11.4    |  |
| Active Set                       | Loop PID           | 20.4    |  |
| Address                          | Comms H or J       | 13.3    |  |
| Advance                          | Programmer Summary | 1.13    |  |
| Alarm OP                         | totaliser 1 to 4   | 14.3    |  |
| Alarm Page                       | Inst Display       | 5.4     |  |
| Alarm SP                         | totaliser 1 to 2   | 14.3    |  |
| Alarm Summary                    | Inst Display       | 5.4     |  |
| Alm Days                         | IPMonitor 1 to 11  | 16.2    |  |
| Alm Out                          | IPMonitor 1 to 8   | 16.2    |  |
| Alm Time                         | IPMonitor 1 to 9   | 16.2    |  |
| Alt SP                           | Loop Setpoint      | 20.6    |  |
| Alt SP En                        | Loop Setpoint      | 20.6    |  |
| AnAlm En                         | Inst Options       | 5.3     |  |
| Atten                            | Load               | 19.1    |  |
| AutoMan                          | Loop Main          | 20.2    |  |
| Aux1 Bar Val                     | Inst Display       | 5.4     |  |
| Aux2 Bar Val                     | Inst Display       | 5.4     |  |
| В                                |                    |         |  |
| Backlash                         | Modules            | 9.3     |  |
| BarScale Max                     | Inst Display       | 5.4     |  |
| BarScale Min                     | Inst Display       | 5.4     |  |
| Baud Rate                        | Comms H or J       | 13.3    |  |
| Bcast Val                        | Comms H or J       | 13.3    |  |
| BCD Value                        | BCDin 1 and 11     | 12.1    |  |
| BCDIn En                         | Inst Options       | 5.3     |  |
| Block                            | AnAlm 1 to 17      | 11.4    |  |
| Boundary 1-2                     | Loop PID           | 20.4    |  |
| Boundary 2-3                     | Loop PID           | 20.4    |  |
| Broadcast                        | Comms H or J       | 13.3    |  |
| С                                |                    |         |  |
| Cal State                        | PV Input           | 6.8     |  |
| Cal Active                       | Txdr 1 or 17       | 23.5    |  |
| Cal Band                         | Txdr 1 or 16       | 23.5    |  |

234.



Part No HA027988 Issue 3.0 Aug-04

2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

| Parameters in order of page header |                  |         |  |
|------------------------------------|------------------|---------|--|
| Parameter                          | Page Header      | Section |  |
| Humidity En                        | Inst Options     | 5.3     |  |
| UsrVal En1                         | Inst Options     | 5.3     |  |
| UsrVal En2                         | Inst Options     | 5.3     |  |
|                                    | Inst Display     |         |  |
| Home Timeout                       | Inst Display     | 5.4     |  |
| Units                              | Inst Display     | 5.4     |  |
| Loop Summary                       | Inst Display     | 5.4     |  |
| Prog Summary                       | Inst Display     | 5.4     |  |
| Alarm Summary                      | Inst Display     | 5.4     |  |
| Prog Edit                          | Inst Display     | 5.4     |  |
| Control Page                       | Inst Display     | 5.4     |  |
| Alarm Page                         | Inst Display     | 5.4     |  |
| BarScale Max                       | Inst Display     | 5.4     |  |
| BarScale Min                       | Inst Display     | 5.4     |  |
| Main Bar Val                       | Inst Display     | 5.4     |  |
| Aux1 Bar Val                       | Inst Display     | 5.4     |  |
| Aux2 Bar Val                       | Inst Display     | 5.4     |  |
| Language                           | Inst Display     | 5.4     |  |
|                                    | Inst Information |         |  |
| Inst Type                          | Inst Information | 5.5     |  |
| Version Num                        | Inst Information | 5.5     |  |
| Serial Num                         | Inst Information | 5.5     |  |
| Passcode1                          | Inst Information | 5.5     |  |
| Passcode2                          | Inst Information | 5.5     |  |
| Passcode3                          | Inst Information | 5.5     |  |
|                                    | Inst Diagnostics |         |  |
| Max Con Tick                       | Inst Diagnostics | 5.6     |  |
| CPU % Min                          | Inst Diagnostics | 5.6     |  |
| CPU % Free                         | Inst Diagnostics | 5.6     |  |
| Con Ticks                          | Inst Diagnostics | 5.6     |  |
| UI Ticks                           | Inst Diagnostics | 5.6     |  |
| Power FF                           | Inst Diagnostics | 5.6     |  |
| Error Count                        | Inst Diagnostics | 5.6     |  |
| Error 1                            | Inst Diagnostics | 5.6     |  |
| Error 2                            | Inst Diagnostics | 5.6     |  |
| Error 3                            | Inst Diagnostics | 5.6     |  |
| Error 4                            | Inst Diagnostics | 5.6     |  |
| Error 5                            | Inst Diagnostics | 5.6     |  |
| Error 6                            | Inst Diagnostics | 5.6     |  |
| Error 7                            | Inst Diagnostics | 5.6     |  |

| Parameters in alphabetical order |                  |         |  |
|----------------------------------|------------------|---------|--|
| Parameter                        | Page Header      | Section |  |
| Cal Enable                       | Txdr 1 or 4      | 23.5    |  |
| Cal State                        | Modules          | 9.3     |  |
| Cal Status                       | Txdr 1 or 20     | 23.5    |  |
| Cal Type                         | Txdr 1 or 2      | 23.5    |  |
| Call Cycles                      | Program 1 to 58  | 21.2    |  |
| Call Program                     | Program 1 to 57  | 21.2    |  |
| СВН                              | Loop PID         | 20.4    |  |
| CBH2                             | Loop PID         | 20.4    |  |
| СВНЗ                             | Loop PID         | 20.4    |  |
| CBL                              | Loop PID         | 20.4    |  |
| CBL2                             | Loop PID         | 20.4    |  |
| CBL3                             | Loop PID         | 20.4    |  |
| Ch1 Control                      | Loop Setup       | 20.3    |  |
| Ch1 Pot Brk                      | Loop Output      | 20.7    |  |
| Ch1 OnOff Hys                    | Loop Output      | 20.7    |  |
| Ch1 Output                       | Loop Output      | 20.7    |  |
| Ch1 Pot Pos                      | Loop Output      | 20.7    |  |
| Ch1 TravelT                      | Loop Output      | 20.7    |  |
| Ch2 Control                      | Loop Setup       | 20.3    |  |
| Ch2 Gain                         | Load             | 19.1    |  |
| Ch2 DeadB                        | Loop Output      | 20.7    |  |
| Ch2 OnOff Hys                    | Loop Output      | 20.7    |  |
| Ch2 Output                       | Loop Output      | 20.7    |  |
| Ch2 Pot Brk                      | Loop Output      | 20.7    |  |
| Ch2 Pot Pos                      | Loop Output      | 20.7    |  |
| Ch2 TravelT                      | Loop Output      | 20.7    |  |
| CJC Temp                         | PV Input         | 6.8     |  |
| CJC Temp                         | Modules          | 9.3     |  |
| CJC Type                         | Modules          | 9.3     |  |
| СЈС Туре                         | PV Input         | 6.8     |  |
| Clear Cal                        | Txdr 1 or 5      | 23.5    |  |
| Clear Log                        | Inst Diagnostics | 5.6     |  |
| Clear O'flow                     | Counter 1 to 10  | 14.1    |  |
| Clear Stats                      | Inst Diagnostics | 5.6     |  |
| Clock                            | Counter 1 to 6   | 14.1    |  |
| Comms Delay                      | Comms H or J     | 13.3    |  |
| Comms StackFree                  | Inst Diagnostics | 5.6     |  |
| Con Ticks                        | Inst Diagnostics | 5.6     |  |
| Config Code                      | Access           | 2.2     |  |
| Control Act                      | Loop Setup       | 20.3    |  |

Part No HA027988 Issue 3.0

Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

| Parameters in order of page header |                  |         |  |
|------------------------------------|------------------|---------|--|
| Parameter                          | Page Header      | Section |  |
| Error 8                            | Inst Diagnostics | 5.6     |  |
| Clear Log                          | Inst Diagnostics | 5.6     |  |
| Clear Stats                        | Inst Diagnostics | 5.6     |  |
| String Count                       | Inst Diagnostics | 5.6     |  |
| String Space                       | Inst Diagnostics | 5.6     |  |
| Segments Left                      | Inst Diagnostics | 5.6     |  |
| Ctl Stack Free                     | Inst Diagnostics | 5.6     |  |
| Max UI Ticks                       | Inst Diagnostics | 5.6     |  |
| Comms StackFree                    | Inst Diagnostics | 5.6     |  |
| UI Stack Free                      | Inst Diagnostics | 5.6     |  |
| Disp Stack Free                    | Inst Diagnostics | 5.6     |  |
| Idle StackFree                     | Inst Diagnostics | 5.6     |  |
|                                    | Timer 1 to 4     |         |  |
| Elapsed Time                       | Timer 1 to 4     | 14.2    |  |
| Output                             | Timer 1 to 5     | 14.2    |  |
| Time                               | Timer 1 to 6     | 14.2    |  |
| Triggered                          | Timer 1 to 7     | 14.2    |  |
| Туре                               | Timer 1 to 8     | 14.2    |  |
| Input                              | Timer 1 to 9     | 14.2    |  |
|                                    | Program All      |         |  |
| PV Input                           | Program All      | 21.2    |  |
| SP Input                           | Program All      | 21.2    |  |
| Servo                              | Program All      | 21.2    |  |
| Power Fail                         | Program All      | 21.2    |  |
| Sync Input                         | Program All      | 21.2    |  |
| Max Events                         | Program All      | 21.2    |  |
| SyncMode                           | Program All      | 21.2    |  |
| Prog Reset                         | Program All      | 21.2    |  |
| Prog Run                           | Program All      | 21.2    |  |
| Prog Hold                          | Program All      | 21.2    |  |
| End Of Seg                         | Program All      | 21.2    |  |
| Event 1                            | Program All      | 21.2    |  |
| Event 2                            | Program All      | 21.2    |  |
| Event 3                            | Program All      | 21.2    |  |
| Event 4                            | Program All      | 21.2    |  |
| Event 5                            | Program All      | 21.2    |  |
| Event 6                            | Program All      | 21.2    |  |
| Event 7                            | Program All      | 21.2    |  |
| Event 8                            | Program All      | 21.2    |  |
|                                    |                  |         |  |

| Parameters in alphabetical order |                    |         |  |
|----------------------------------|--------------------|---------|--|
| Parameter                        | Page Header        | Section |  |
| Control Page                     | Inst Display       | 5.4     |  |
| Cool Type                        | Loop Output        | 20.7    |  |
| Count                            | Counter 1 to 8     | 14.1    |  |
| Counter En                       | Inst Options       | 5.3     |  |
| CPU % Free                       | Inst Diagnostics   | 5.6     |  |
| CPU % Min                        | Inst Diagnostics   | 5.6     |  |
| Ctl Stack Free                   | Inst Diagnostics   | 5.6     |  |
| Customer ID                      | Access             | 2.2     |  |
| Cycles                           | Program 1 to 53    | 21.2    |  |
| Cycles Left                      | Programmer Summary | 1.13    |  |
| CarbonPot                        | Zirconia           | 15.4    |  |
| CleanFreq                        | Zirconia           | 15.4    |  |
| CleanTime                        | Zirconia           | 15.4    |  |
| CleanValve                       | Zirconia           | 15.4    |  |
| CleanState                       | Zirconia           | 15.4    |  |
| CleanProbe                       | Zirconia           | 15.4    |  |
| D                                |                    |         |  |
| Day                              | RTClock            | 14.4    |  |
| Days Above                       | IPMonitor 1 to 10  | 16.2    |  |
| Dec Value                        | BCDin 1 and 10     | 12.1    |  |
| Delay                            | AnAlm 1 to 19      | 11.4    |  |
| Deriv Type                       | Loop Setup         | 20.3    |  |
| Dest Addr                        | Comms H or J       | 13.3    |  |
| DewPoint                         | Humidity           | 15.2    |  |
| DewPoint                         | Zirconia           | 15.4    |  |
| OgAlm En                         | Inst Options       | 5.3     |  |
| Direction                        | Counter 1 to 3     | 14.1    |  |
| Disp Stack Free                  | Inst Diagnostics   | 5.6     |  |
| Disp Hi                          | AA Relay           | 8.2     |  |
| Disp Hi                          | Modules            | 9.3     |  |
| Disp Hi                          | PV Input           | 6.8     |  |
| Disp Lo                          | AA Relay           | 8.2     |  |
| Disp Lo                          | Modules            | 9.3     |  |
| Disp Lo                          | PV Input           | 6.8     |  |
| DryT                             | Humidity           | 15.2    |  |
| E                                |                    |         |  |
| lapsed Time                      | Timer 1 to 4       | 14.2    |  |
| miss                             | PV Input           | 6.8     |  |
| miss                             | Module             | 9.3     |  |
| nable                            | Counter 1 to 2     | 14.1    |  |

236.



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

Aug-04

Part No HA027988 Issue 3.0

| Parameters in order of page header |                    |         |  |
|------------------------------------|--------------------|---------|--|
| Parameter                          | Page Header        | Section |  |
|                                    | Programmer Summary |         |  |
| Advance                            | Programmer Summary | 1.13    |  |
| SkipSeg                            | Programmer Summary | 1.13    |  |
| Fast Run                           | Programmer Summary | 1.13    |  |
| Status                             | Programmer Summary | 1.13    |  |
| Program                            | Programmer Summary | 1.13    |  |
| Segment                            | Programmer Summary | 1.13    |  |
| PSP                                | Programmer Summary | 1.13    |  |
| Reset Events                       | Programmer Summary | 1.13    |  |
| Prog Time Left                     | Programmer Summary | 1.13    |  |
| Cycles Left                        | Programmer Summary | 1.13    |  |
| Seg Time Left                      | Programmer Summary | 1.13    |  |
|                                    | Program 1 to 50    |         |  |
| Segments Used                      | Program 1 to 50    | 21.2    |  |
| Holdback Value                     | Program 1 to 51    | 21.2    |  |
| Ramp Units                         | Program 1 to 52    | 21.2    |  |
| Cycles                             | Program 1 to 53    | 21.2    |  |
| Segment                            | Program 1 to 54    | 21.2    |  |
| Segment Type                       | Program 1 to 55    | 21.2    |  |
| End Type                           | Program 1 to 56    | 21.2    |  |
| Call Program                       | Program 1 to 57    | 21.2    |  |
| Call Cycles                        | Program 1 to 58    | 21.2    |  |
| Holdback Type                      | Program 1 to 59    | 21.2    |  |
| Duration                           | Program 1 to 60    | 21.2    |  |
| Target SP                          | Program 1 to 61    | 21.2    |  |
| Ramp Rate                          | Program 1 to 62    | 21.2    |  |
| Event Outs                         | Program 1 to 63    | 21.2    |  |
|                                    | AnAlm 1 to 8       |         |  |
| Туре                               | AnAlm 1 to 8       | 11.4    |  |
| Input                              | AnAlm 1 to 9       | 11.4    |  |
| Reference                          | AnAlm 1 to 10      | 11.4    |  |
| Threshold                          | AnAlm 1 to 11      | 11.4    |  |
| Output                             | AnAlm 1 to 12      | 11.4    |  |
| Inhibit                            | AnAlm 1 to 13      | 11.4    |  |
| Hyst                               | AnAlm 1 to 14      | 11.4    |  |
| Latch                              | AnAlm 1 to 15      | 11.4    |  |
| Ack                                | AnAlm 1 to 16      | 11.4    |  |
| Block                              | AnAlm 1 to 17      | 11.4    |  |
| Priority                           | AnAlm 1 to 18      | 11.4    |  |
| Delay                              | AnAlm 1 to 19      | 11.4    |  |

| Parameters in alphabetical order |                            |         |
|----------------------------------|----------------------------|---------|
| Parameter                        | Page Header                | Section |
| Enable                           | Loop Tune                  | 20.5    |
| End Of Seg                       | Program All                | 21.2    |
| End Type                         | Program 1 to 56            | 21.2    |
| ErrMode                          | Switch Over                | 22.1    |
| Error 1                          | Inst Diagnostics           | 5.6     |
| Error 2                          | Inst Diagnostics           | 5.6     |
| Error 3                          | Inst Diagnostics           | 5.6     |
| Error 4                          | Inst Diagnostics           | 5.6     |
| Error 5                          | Inst Diagnostics           | 5.6     |
| Error 6                          | Inst Diagnostics           | 5.6     |
| Error 7                          | Inst Diagnostics           | 5.6     |
| Error 8                          | Inst Diagnostics           | 5.6     |
| Error Count                      | Inst Diagnostics           | 5.6     |
| Event 1                          | Program All                | 21.2    |
| Event 2                          | Program All                | 21.2    |
| Event 3                          | Program All                | 21.2    |
| Event 4                          | Program All                | 21.2    |
| Event 5                          | Program All                | 21.2    |
| Event 6                          | Program All                | 21.2    |
| Event 7                          | Program All                | 21.2    |
| Event 8                          | Program All                | 21.2    |
| Event Outs                       | Program 1 to 63            | 21.2    |
| Expander Type                    | IOExp                      | 10.1    |
| F                                |                            |         |
| Fall Type                        | Polynomial                 | 18.2    |
| Fall Value                       | Lin16                      | 18.1    |
| Fall Value                       | Polynomial                 | 18.2    |
| Fall Type                        | Logic Operators Lgc 1 to 5 | 17.1    |
| Fall Type                        | Switch Over                | 22.1    |
| Fall Value                       | Switch Over                | 22.1    |
| Fallback                         | Math2 1 to 36              | 17.3    |
| Fallback                         | Modules                    | 9.3     |
| Fallback                         | Mux8                       | 17.4    |
| Fallback                         | PV Input                   | 6.8     |
| Fallback PV                      | PV Input                   | 6.8     |
| Fallback PV                      | Modules                    | 9.3     |
| Fallback Val                     | Math2 1 to 29              | 17.3    |
| Fallback Val                     | Mux9                       | 17.4    |
| Fast Run                         | Programmer Summary         | 1.13    |
| FF Gain                          | Loop Output                | 20.7    |

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

| Parameters in order of page header |                          |      |  |
|------------------------------------|--------------------------|------|--|
| Parameter                          | arameter Page Header Sec |      |  |
|                                    | Loop Main                |      |  |
| PV                                 | Loop Main                | 20.2 |  |
| AutoMan                            | Loop Main                | 20.2 |  |
| Target SP                          | Loop Main                | 20.2 |  |
| WSP                                | Loop Main                | 20.2 |  |
| Work OP                            | Loop Main                | 20.2 |  |
| Inhibit                            | Loop Main                | 20.2 |  |
|                                    | Loop Setup               |      |  |
| Ch1 Control                        | Loop Setup               | 20.3 |  |
| Ch2 Control                        | Loop Setup               | 20.3 |  |
| Control Act                        | Loop Setup               | 20.3 |  |
| PB Units                           | Loop Setup               | 20.3 |  |
| Deriv Type                         | Loop Setup               | 20.3 |  |
|                                    | Loop Tune                |      |  |
| Enable                             | Loop Tune                | 20.5 |  |
| High Output                        | Loop Tune                | 20.5 |  |
| Low Output                         | Loop Tune                | 20.5 |  |
| State                              | Loop Tune                | 20.5 |  |
| Stage                              | Loop Tune                | 20.5 |  |
| Stage Time                         | Loop Tune                | 20.5 |  |
|                                    | Loop PID                 |      |  |
| Sched Type                         | Loop PID                 | 20.4 |  |
| Num Sets                           | Loop PID                 | 20.4 |  |
| Remote Input                       | Loop PID                 | 20.4 |  |
| Active Set                         | Loop PID                 | 20.4 |  |
| Boundary 1-2                       | Loop PID                 | 20.4 |  |
| Boundary 2-3                       | Loop PID                 | 20.4 |  |
| PB                                 | Loop PID                 | 20.4 |  |
| Ti                                 | Loop PID                 | 20.4 |  |
| Td                                 | Loop PID                 | 20.4 |  |
| R2G                                | Loop PID                 | 20.4 |  |
| СВН                                | Loop PID                 | 20.4 |  |
| CBL                                | Loop PID                 | 20.4 |  |
| MR                                 | Loop PID                 | 20.4 |  |
| LBT                                | Loop PID                 | 20.4 |  |
| PB2                                | Loop PID                 | 20.4 |  |
| Ti2                                | Loop PID                 | 20.4 |  |
| Td2                                |                          | 20.4 |  |
| R2G2                               |                          | 20.4 |  |
| СВН2                               |                          | 20.1 |  |
| 00112                              |                          | 20.4 |  |

| Parameters in alphabetical order |                   |         |
|----------------------------------|-------------------|---------|
| Parameter                        | Page Header       | Section |
| FF Offset                        | Loop Output       | 20.7    |
| FF OP                            | Loop Output       | 20.7    |
| FF Trim Lim                      | Loop Output       | 20.7    |
| FF Type                          | Loop Output       | 20.7    |
| Filter Time                      | PV Input          | 6.8     |
| Filter Time                      | Modules           | 9.3     |
| G                                |                   |         |
| GasRef                           | Zirconia          | 15.4    |
| Gain                             | Load              | 19.1    |
| Goto                             | Access            | 2.2     |
| н                                |                   |         |
| High Output                      | Loop Tune         | 20.5    |
| High Limit                       | Math2 1 to 30     | 17.3    |
| High Limit                       | Mux11             | 17.4    |
| High Limit                       | UsrVal 1 to 18    | 24.1    |
| Hold                             | totaliser 1 to 9  | 14.3    |
| Holdback Type                    | Program 1 to 59   | 21.2    |
| Holdback Value                   | Program 1 to 51   | 21.2    |
| Home Timeout                     | Inst Display      | 5.4     |
| Humidity En                      | Inst Options      | 5.3     |
| Hyst                             | AnAlm 1 to 14     | 11.4    |
| I                                |                   |         |
| Ident                            | Comms H or J      | 13.3    |
| Ident                            | Modules           | 9.3     |
| Idle StackFree                   | Inst Diagnostics  | 5.6     |
| In                               | totaliser 1 to 7  | 14.3    |
| In 1-10                          | IOExp             | 10.1    |
| In 11-20                         | IOExp             | 10.1    |
| In High                          | Lin16             | 18.1    |
| In High                          | Polynomial        | 18.2    |
| In Low                           | Lin16             | 18.1    |
| In Low                           | Polynomial        | 18.2    |
| In Status                        | IPMonitor 1 to 12 | 16.2    |
| In1                              | BCDin 1 and 2     | 12.1    |
| In1                              | Lgc11             | 17.2    |
| In1 to In14                      | Lin16             | 18.1    |
| In1 to In20                      | ЮЕхр              | 10.1    |
| In2                              | BCDin 1 and 3     | 12.1    |
| In2                              | Lgc12             | 17.2    |
| In3                              | BCDin 1 and 4     | 12.1    |

238.



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

Aug-04

Part No HA027988 Issue 3.0

| Parameters in order of page header |               |         |
|------------------------------------|---------------|---------|
| Parameter                          | Page Header   | Section |
| CBL2                               | Loop PID      | 20.4    |
| MR2                                | Loop PID      | 20.4    |
| LBT2                               | Loop PID      | 20.4    |
| PB3                                | Loop PID      | 20.4    |
| Ti3                                | Loop PID      | 20.4    |
| Td3                                | Loop PID      | 20.4    |
| R2G3                               | Loop PID      | 20.4    |
| СВНЗ                               | Loop PID      | 20.4    |
| CBL3                               | Loop PID      | 20.4    |
| MR3                                | Loop PID      | 20.4    |
| LBT3                               | Loop PID      | 20.4    |
|                                    | Loop Setpoint |         |
| Range Hi                           | Loop Setpoint | 20.6    |
| Range Lo                           | Loop Setpoint | 20.6    |
| SP Select                          | Loop Setpoint | 20.6    |
| SP1                                | Loop Setpoint | 20.6    |
| SP2                                | Loop Setpoint | 20.6    |
| SP HighLim                         | Loop Setpoint | 20.6    |
| SP LowLim                          | Loop Setpoint | 20.6    |
| Alt SP                             | Loop Setpoint | 20.6    |
| Alt SP En                          | Loop Setpoint | 20.6    |
| Rate                               | Loop Setpoint | 20.6    |
| RateDone                           | Loop Setpoint | 20.6    |
| SPTrim                             | Loop Setpoint | 20.6    |
| SPTrim Hi                          | Loop Setpoint | 20.6    |
| SPTrim Lo                          | Loop Setpoint | 20.6    |
| Man Track                          | Loop Setpoint | 20.6    |
| SPTrack                            | Loop Setpoint | 20.6    |
| TrackPV                            | Loop Setpoint | 20.6    |
| TrackSP                            | Loop Setpoint | 20.6    |
|                                    | Loop Output   |         |
| Output Hi                          | Loop Output   | 20.7    |
| Output Lo                          | Loop Output   | 20.7    |
| Ch1 Output                         | Loop Output   | 20.7    |
| Ch2 Output                         | Loop Output   | 20.7    |
| Ch2 DeadB                          | Loop Output   | 20.7    |
| Rate                               | Loop Output   | 20.7    |
| Ch1 OnOff Hys                      | Loop Output   | 20.7    |
| Ch2 OnOff Hys                      | Loop Output   | 20.7    |
| Sbrk Mode                          | Loop Output   | 20.7    |

| Parameters in alphabetical order |                            |         |
|----------------------------------|----------------------------|---------|
| Parameter                        | Page Header                | Section |
| In3                              | Lgc13                      | 17.2    |
| In4                              | BCDin 1 and 5              | 12.1    |
| In5                              | BCDin 1 and 6              | 12.1    |
| In5                              | Lgc15                      | 17.2    |
| In6                              | BCDin 1 and 7              | 12.1    |
| In6                              | Lgc16                      | 17.2    |
| In7                              | BCDin 1 and 8              | 12.1    |
| In7                              | Lgc17                      | 17.2    |
| In8                              | BCDin 1 and 9              | 12.1    |
| In8                              | Lgc18                      | 17.2    |
| Inertia                          | Modules                    | 9.3     |
| Inhibit                          | AnAlm 1 to 13              | 11.4    |
| Inhibit                          | Loop Main                  | 20.2    |
| Input                            | AnAlm 1 to 9               | 11.4    |
| Input                            | IPMonitor 1 to 3           | 16.2    |
| Input                            | Lin16                      | 18.1    |
| Input                            | Polynomial                 | 18.2    |
| Input                            | Timer 1 to 9               | 14.2    |
| Input 1                          | Switch Over                | 22.1    |
| Input 2                          | Switch Over                | 22.1    |
| Input Hi                         | Txdr 1 or 12               | 23.5    |
| Input Lin                        | Polynomial                 | 18.2    |
| Input Lo                         | Txdr 1 or 13               | 23.5    |
| Input Hi                         | Switch Over                | 22.1    |
| Input Lo                         | Switch Over                | 22.1    |
| Input Value                      | Txdr 1 or 3                | 23.5    |
| Input1                           | Logic Operators Lgc 1 to 3 | 17.1    |
| Input1                           | Mux13                      | 17.4    |
| Input1 Scale                     | Math2 1 to 24              | 17.3    |
| Input1 Value                     | Math2 1 to 25              | 17.3    |
| Input2                           | Logic Operators Lgc 1 to 4 | 17.1    |
| Input2                           | Mux14                      | 17.4    |
| Input2 Scale                     | Math2 1 to 26              | 17.3    |
| Input2 Value                     | Math2 1 to 27              | 17.3    |
| Input3                           | Mux15                      | 17.4    |
| Input4                           | Mux16                      | 17.4    |
| Input5                           | Mux17                      | 17.4    |
| Input6                           | Mux18                      | 17.4    |
| Input7                           | Mux19                      | 17.4    |
| Input8                           | Mux20                      | 17.4    |

Part No HA027988 Issue 3.0 Aug-04

HVS.

2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

| Parameters in order of page header |               |         |
|------------------------------------|---------------|---------|
| Parameter                          | Page Header   | Section |
| Safe OP                            | Loop Output   | 20.7    |
| Man Mode                           | Loop Output   | 20.7    |
| Man OP                             | Loop Output   | 20.7    |
| Pwrff Enable                       | Loop Output   | 20.7    |
| Pwrff Input                        | Loop Output   | 20.7    |
| Cool Type                          | Loop Output   | 20.7    |
| FF Type                            | Loop Output   | 20.7    |
| FF Gain                            | Loop Output   | 20.7    |
| FF Offset                          | Loop Output   | 20.7    |
| FF Trim Lim                        | Loop Output   | 20.7    |
| FF OP                              | Loop Output   | 20.7    |
| TrackOP                            | Loop Output   | 20.7    |
| TrackEn                            | Loop Output   | 20.7    |
| RemOPL                             | Loop Output   | 20.7    |
| RemOPH                             | Loop Output   | 20.7    |
| Ch1 TravelT                        | Loop Output   | 20.7    |
| Ch2 TravelT                        | Loop Output   | 20.7    |
| PotCal                             | Loop Output   | 20.7    |
| Nudge Raise                        | Loop Output   | 20.7    |
| Nudge Lower                        | Loop Output   | 20.7    |
| Ch1 Pot Pos                        | Loop Output   | 20.7    |
| Ch1 Pot Brk                        | Loop Output   | 20.7    |
| Ch2 Pot Pos                        | Loop Output   | 20.7    |
| Ch2 Pot Brk                        | Loop Output   | 20.7    |
| PotBrk Mode                        | Loop Output   | 20.7    |
|                                    | Math2 1 to 24 |         |
| Input1 Scale                       | Math2 1 to 24 | 17.3    |
| Input1 Value                       | Math2 1 to 25 | 17.3    |
| Input2 Scale                       | Math2 1 to 26 | 17.3    |
| Input2 Value                       | Math2 1 to 27 | 17.3    |
| Operation                          | Math2 1 to 28 | 17.3    |
| Fallback Val                       | Math2 1 to 29 | 17.3    |
| High Limit                         | Math2 1 to 30 | 17.3    |
| Low Limit                          | Math2 1 to 31 | 17.3    |
| Status                             | Math2 1 to 32 | 17.3    |
| Output Value                       | Math2 1 to 33 | 17.3    |
| Output Res'n                       | Math2 1 to 34 | 17.3    |
| Output Units                       | Math2 1 to 35 | 17.3    |
| Fallback                           | Math2 1 to 36 | 17.3    |
|                                    |               |         |

| Parameters in alphabetical order |                            |         |
|----------------------------------|----------------------------|---------|
| Parameter                        | Page Header                | Section |
| nst Type                         | Inst Information           | 5.5     |
| nv21-30                          |                            | 10.1    |
| nv31-40                          |                            | 10.1    |
| nvert                            | AA Relay                   | 8.2     |
| nvert                            | Lgc9                       | 17.2    |
| nvert                            | Logic Operators Lgc 1 to 6 | 17.1    |
| nvert                            | Modules                    | 9.3     |
| O Exp En                         | Inst Options               | 5.3     |
| О Туре                           | AA Relay                   | 8.2     |
| О Туре                           | Modules                    | 9.3     |
| О Туре                           | PV Input                   | 6.8     |
| P Mon En                         | Inst Options               | 5.3     |
| R Mode                           | Access                     | 2.2     |
| К                                |                            |         |
| Keylock                          | Access                     | 2.2     |
| L                                |                            |         |
| anguage                          | Inst Display               | 5.4     |
| atch                             | AnAlm 1 to 15              | 11.4    |
| .BT                              | Loop PID                   | 20.4    |
| .BT2                             | Loop PID                   | 20.4    |
| .BT3                             | Loop PID                   | 20.4    |
| ead Res                          | PV Input                   | 6.8     |
| ead Res                          | Modules                    | 9.3     |
| evel2 Code                       | Access                     | 2.2     |
| evel3 Code                       | Access                     | 2.2     |
| .gc2 En1                         | Inst Options               | 5.3     |
| .gc2 En2                         | Inst Options               | 5.3     |
| .gc2 En3                         | Inst Options               | 5.3     |
| .gc8 En                          | Inst Options               | 5.3     |
| in Type                          | PV Input                   | 6.8     |
| in Type                          | Modules                    | 9.3     |
| .in16Pt En                       | Inst Options               | 5.3     |
| .oad En                          | Inst Options               | 5.3     |
| .oop En                          | Inst Options               | 5.3     |
| oop Summary                      | Inst Display               | 5.4     |
| .oopOP CH1                       | Load                       | 19.1    |
| oopOP CH2                        | Load                       | 19.1    |
| ow Output                        | Loop Tune                  | 20.5    |
| .ow Limit                        | Math2 1 to 31              | 17.3    |
| ow Limit                         | Mux12                      | 17.4    |

240.



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com

Aug-04

Part No HA027988 Issue 3.0

| Parameters in order of page header |              |         |  |
|------------------------------------|--------------|---------|--|
| Parameter                          | Page Header  | Section |  |
|                                    | Comms H or J |         |  |
| Address                            | Comms H or J | 13.3    |  |
| Comms Delay                        | Comms H or J | 13.3    |  |
| Res'n                              | Comms H or J | 13.3    |  |
| Network Status                     | Comms H or J | 13.3    |  |
| Parity                             | Comms H or J | 13.3    |  |
| Baud Rate                          | Comms H or J | 13.3    |  |
| Protocol                           | Comms H or J | 13.3    |  |
| ldent                              | Comms H or J | 13.3    |  |
| Broadcast                          | Comms H or J | 13.3    |  |
| Dest Addr                          | Comms H or J | 13.3    |  |
| Bcast Val                          | Comms H or J | 13.3    |  |
|                                    | Load         |         |  |
| Туре                               | Load         | 19.1    |  |
| Gain                               | Load         | 19.1    |  |
| TC1                                | Load         | 19.1    |  |
| TC2                                | Load         | 19.1    |  |
| Atten                              | Load         | 19.1    |  |
| Ch2 Gain                           | Load         | 19.1    |  |
| PV Out1                            | Load         | 19.1    |  |
| PV Out2                            | Load         | 19.1    |  |
| LoopOP CH1                         | Load         | 19.1    |  |
| Res'n                              | Load         | 19.1    |  |
| Units                              | Load         | 19.1    |  |
| PVFault                            | Load         | 19.1    |  |
| Noise                              | Load         | 19.1    |  |
| Offset                             | Load         | 19.1    |  |
| LoopOP CH2                         | Load         | 19.1    |  |
|                                    | Lin16        |         |  |
| Units                              | Lin16        | 18.1    |  |
| In1 to In14                        | Lin16        | 18.1    |  |
| Out1 to Out 14                     | Lin16        | 18.1    |  |
| In High                            | Lin16        | 18.1    |  |
| In Low                             | Lin16        | 18.1    |  |
| Out High                           | Lin16        | 18.1    |  |
| Out Low                            | Lin16        | 18.1    |  |
| Fall Value                         | Lin16        | 18.1    |  |
| Input                              | Lin16        | 18.1    |  |
| Status                             | Lin16        | 18.1    |  |
| Out Res'n                          | Lin16        | 18.1    |  |

| Parameters in alphabetical order |                  |         |
|----------------------------------|------------------|---------|
| Parameter                        | Page Header      | Section |
| Low Limit                        | UsrVal 1 to 19   | 24.1    |
| М                                |                  |         |
| Main Bar Val                     | Inst Display     | 5.4     |
| Man Mode                         | Loop Output      | 20.7    |
| Man OP                           | Loop Output      | 20.7    |
| Man Track                        | Loop Setpoint    | 20.6    |
| Math2 En1                        | Inst Options     | 5.3     |
| Math2 En2                        | Inst Options     | 5.3     |
| Math2 En3                        | Inst Options     | 5.3     |
| Max                              | IPMonitor 1 to 5 | 16.2    |
| Max Con Tick                     | Inst Diagnostics | 5.6     |
| Max Events                       | Program All      | 21.2    |
| Max UI Ticks                     | Inst Diagnostics | 5.6     |
| Meas Val                         | AA Relay         | 8.2     |
| Meas Val                         | PV Input         | 6.8     |
| Meas Value                       | Modules          | 9.3     |
| MinCalTemp                       | Zirconia         | 15.4    |
| MinRcovTime                      | Zirconia         | 15.4    |
| MaxRcovTime                      | Zirconia         | 15.4    |
| Min                              | IPMonitor 1 to 6 | 16.2    |
| Min OnTime                       | AA Relay         | 8.2     |
| Min OnTime                       | Modules          | 9.3     |
| Mode                             | RTClock          | 14.4    |
| MR                               | Loop PID         | 20.4    |
| MR2                              | Loop PID         | 20.4    |
| MR3                              | Loop PID         | 20.4    |
| Mux8 En                          | Inst Options     | 5.3     |
| Ν                                |                  |         |
| Network Status                   | Comms H or J     | 13.3    |
| Noise                            | Load             | 19.1    |
| Nudge Lower                      | Loop Output      | 20.7    |
| Nudge Raise                      | Loop Output      | 20.7    |
| Num Sets                         | Loop PID         | 20.4    |
| NumIn                            | Lgc10            | 17.2    |
| 0                                |                  |         |
| Off Day1                         | RTClock          | 14.4    |
| Off Day2                         | RTClock          | 14.4    |
| Off Time1                        | RTClock          | 14.4    |
| Off Time2                        | RTClock          | 14.4    |
| Offset                           | Load             | 19.1    |

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

| Parameters in order of page header |             |         |
|------------------------------------|-------------|---------|
| Parameter                          | Page Header | Section |
| Output                             | Lin16       | 18.1    |
|                                    | Polynomial  |         |
| Units                              | Polynomial  | 18.2    |
| Input                              | Polynomial  | 18.2    |
| Output                             | Polynomial  | 18.2    |
| In High                            | Polynomial  | 18.2    |
| In Low                             | Polynomial  | 18.2    |
| Out High                           | Polynomial  | 18.2    |
| Out Low                            | Polynomial  | 18.2    |
| Fall Type                          | Polynomial  | 18.2    |
| Fall Value                         | Polynomial  | 18.2    |
| Input Lin                          | Polynomial  | 18.2    |
| Status                             | Polynomial  | 18.2    |
| Out Res'n                          | Polynomial  | 18.2    |
|                                    | PV Input    |         |
| ІО Туре                            | PV Input    | 6.8     |
| Disp Hi                            | PV Input    | 6.8     |
| Disp Lo                            | PV Input    | 6.8     |
| Range Hi                           | PV Input    | 6.8     |
| Range Lo                           | PV Input    | 6.8     |
| Meas Val                           | PV Input    | 6.8     |
| PV                                 | PV Input    | 6.8     |
| Res                                | PV Input    | 6.8     |
| Cal State                          | PV Input    | 6.8     |
| Lin Type                           | PV Input    | 6.8     |
| Units                              | PV Input    | 6.8     |
| SBrk Type                          | PV Input    | 6.8     |
| SBrk Alarm                         | PV Input    | 6.8     |
| Fallback                           | PV Input    | 6.8     |
| Filter Time                        | PV Input    | 6.8     |
| Fallback PV                        | PV Input    | 6.8     |
| Offset                             | PV Input    | 6.8     |
| SBrk Value                         | PV Input    | 6.8     |
| Lead Res                           | PV Input    | 6.8     |
| Status                             | PV Input    | 6.8     |
| Emiss                              | PV Input    | 6.8     |
| СЈС Туре                           | PV Input    | 6.8     |
|                                    |             |         |
|                                    |             |         |
|                                    |             |         |
|                                    |             |         |

| Parameters in alphabetical order |                            |         |
|----------------------------------|----------------------------|---------|
| Parameter                        | Page Header                | Section |
| Offset                           | Modules                    | 9.3     |
| Offset                           | PV Input                   | 6.8     |
| On Day1                          | RTClock                    | 14.4    |
| On Day2                          | RTClock                    | 14.4    |
| On Time1                         | RTClock                    | 14.4    |
| On Time2                         | RTClock                    | 14.4    |
| Oper                             | Lgc8                       | 17.2    |
| Oper                             | Logic Operators Lgc 1 to 2 | 17.1    |
| Operation                        | Math2 1 to 28              | 17.3    |
| Out                              | Lgc19                      | 17.2    |
| Out High                         | Lin16                      | 18.1    |
| Out High                         | Polynomial                 | 18.2    |
| Out Low                          | Lin16                      | 18.1    |
| Out Low                          | Polynomial                 | 18.2    |
| Out Res'n                        | Lin16                      | 18.1    |
| Out Res'n                        | Polynomial                 | 18.2    |
| Out Invert                       | Lgc20                      | 17.2    |
| Out1                             | RTClock                    | 14.4    |
| Out1 to Out 14                   | Lin16                      | 18.1    |
| Out2                             | RTClock                    | 14.4    |
| Out21 to Out40                   | IOExp                      | 10.1    |
| Out21-30                         | IOExp                      | 10.1    |
| Out31-40                         | IOExp                      | 10.1    |
| Output                           | AnAlm 1 to 12              | 11.4    |
| Output                           | Lin16                      | 18.1    |
| Output                           | Logic Operators Lgc 1 to 7 | 17.1    |
| Output                           | Mux21                      | 17.4    |
| Output                           | Polynomial                 | 18.2    |
| Output                           | Timer 1 to 5               | 14.2    |
| Output Hi                        | Loop Output                | 20.7    |
| Output Lo                        | Loop Output                | 20.7    |
| Output Res'n                     | Math2 1 to 34              | 17.3    |
| Output Status                    | Txdr 1 or 19               | 23.5    |
| Output Units                     | Math2 1 to 35              | 17.3    |
| OxygenExp                        | Zirconia                   | 15.4    |
| Oxygen                           | Zirconia                   | 15.4    |
| Output Value                     | Math2 1 to 33              | 17.3    |
| Output Value                     | Txdr 1 or 18               | 23.5    |
| Overflow                         | Counter 1 to 5             | 14.1    |
| D                                |                            |         |

242.



Part No HA027988 Issue 3.0

| Parameters in order of page header |          |         |  |
|------------------------------------|----------|---------|--|
| Parameter Page Header              |          | Section |  |
|                                    | AA Relay |         |  |
| Ю Туре                             | AA Relay | 8.2     |  |
| Disp Hi                            | AA Relay | 8.2     |  |
| Disp Lo                            | AA Relay | 8.2     |  |
| Range Hi                           | AA Relay | 8.2     |  |
| Range Lo                           | AA Relay | 8.2     |  |
| Meas Val                           | AA Relay | 8.2     |  |
| PV                                 | AA Relay | 8.2     |  |
| Min OnTime                         | AA Relay | 8.2     |  |
| Invert                             | AA Relay | 8.2     |  |
|                                    | Modules  |         |  |
| ldent                              | Modules  | 9.3     |  |
| ІО Туре                            | Modules  | 9.3     |  |
| Invert                             | Modules  | 9.3     |  |
| Meas Value                         | Modules  | 9.3     |  |
| PV                                 | Modules  | 9.3     |  |
| Status                             | Modules  | 9.3     |  |
| Min OnTime                         | Modules  | 9.3     |  |
| Disp Hi                            | Modules  | 9.3     |  |
| Disp Lo                            | Modules  | 9.3     |  |
| Range Hi                           | Modules  | 9.3     |  |
| Range Lo                           | Modules  | 9.3     |  |
| Inertia                            | Modules  | 9.3     |  |
| Backlash                           | Modules  | 9.3     |  |
| Cal State                          | Modules  | 9.3     |  |
| Res'n                              | Modules  | 9.3     |  |
| Offset                             | Modules  | 9.3     |  |
| Lin Type                           | Modules  | 9.3     |  |
| Units                              | Modules  | 9.3     |  |
| SBrk Type                          | Modules  | 9.3     |  |
| SBrk Alarm                         | Modules  | 9.3     |  |
| Fallback                           | Modules  | 9.3     |  |
| СЈС Туре                           | Modules  | 9.3     |  |
| Filter Time                        | Modules  | 9.3     |  |
| Fallback PV                        | Modules  | 9.3     |  |
| SBrk Value                         | Modules  | 9.3     |  |
| Lead Res                           | Modules  | 9.3     |  |
| Shunt                              | Modules  | 9.3     |  |
| Voltage                            | Modules  | 9.3     |  |
|                                    |          |         |  |

| Parameters in alphabetical order |                                  |              |
|----------------------------------|----------------------------------|--------------|
| Parameter                        | Page Header                      | Section      |
| Parity                           | Comms H or L                     | 13.3         |
| Passcode1                        |                                  | 5 5          |
| Passcode?                        |                                  | 5.5          |
| Passcode3                        | Inst Information                 | 5.5          |
| PR                               |                                  | 20.4         |
| PB   Inits                       |                                  | 20.4         |
| PB2                              |                                  | 20.5         |
| PB3                              |                                  | 20.4         |
| Poly Fn                          |                                  | 5 3          |
| PotBrk Mode                      |                                  | 20.7         |
| PotCal                           |                                  | 20.7         |
| Power Fail                       | Program All                      | 20.7         |
| Power FF                         |                                  | 5.6          |
| Pressure                         | Humidity                         | 15.0         |
| Priority                         | AnAlm 1 to 18                    | 11.4         |
| Prog Edit                        |                                  | 5.4          |
|                                  | Program All                      | 21.4         |
| Prog Pocot                       |                                  | 21.2         |
| Prog Pup                         |                                  | 21.2         |
|                                  |                                  | 5 /          |
| Prog Time Left                   | Programmer Summary               | 1 13         |
| Progr En                         |                                  | E 2          |
| Program                          | Brogrammer Summary               | 1 1 2        |
|                                  |                                  | 1.13         |
| ProboStatur                      | Zirconia                         | 15.5         |
|                                  | Zirconia                         | 15.4         |
|                                  | Zirconia                         | 15.4         |
|                                  | Zirconia                         | 15.4         |
| ProboFault                       | Zirconia                         | 15.4         |
|                                  | Zii Coilla<br>Brogrammer Summary | 1 1 2        |
|                                  |                                  | 1.15         |
|                                  |                                  | 0.2          |
| v<br>D\/                         |                                  | 0.2          |
| ν<br>Ο\/                         |                                  | 20.2         |
| T V                              |                                  | 9.3<br>C 0   |
|                                  | r v IIIput<br>Zirconia           | 0.0<br>1 E 4 |
|                                  |                                  | 10.4         |
|                                  |                                  | 10.1         |
|                                  |                                  | ו.ט.ו        |
|                                  |                                  | 21.2         |
| PVFault                          | Load                             | 19.1         |

Part No HA027988 Issue 3.0

88 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

| Section           16.2           16.2           16.2           16.2           16.2           16.2           16.2           16.2 |
|---------------------------------------------------------------------------------------------------------------------------------|
| 16.2<br>16.2<br>16.2<br>16.2<br>16.2<br>16.2<br>16.2                                                                            |
| 16.2         16.2         16.2         16.2         16.2         16.2         16.2                                              |
| 16.2         16.2         16.2         16.2         16.2         16.2                                                           |
| 16.2<br>16.2<br>16.2<br>16.2                                                                                                    |
| 16.2<br>16.2<br>16.2                                                                                                            |
| 16.2<br>16.2                                                                                                                    |
| 16.2                                                                                                                            |
|                                                                                                                                 |
| 16.2                                                                                                                            |
| 16.2                                                                                                                            |
| 16.2                                                                                                                            |
| 16.2                                                                                                                            |
| 16.2                                                                                                                            |
|                                                                                                                                 |
| 17.4                                                                                                                            |
| 17.4                                                                                                                            |
| 17.4                                                                                                                            |
| 17.4                                                                                                                            |
| 17.4                                                                                                                            |
| 17.4                                                                                                                            |
| 17.4                                                                                                                            |
| 17.4                                                                                                                            |
| 17.4                                                                                                                            |
| 17.4                                                                                                                            |
| 17.4                                                                                                                            |
| 17.4                                                                                                                            |
| 17.4                                                                                                                            |
| 17.4                                                                                                                            |
| 17.4                                                                                                                            |
|                                                                                                                                 |
| 22.1                                                                                                                            |
| 22.1                                                                                                                            |
| 22.1                                                                                                                            |
| 22.1                                                                                                                            |
| 22.1                                                                                                                            |
| 22.1                                                                                                                            |
| 22.1                                                                                                                            |
| 22.1                                                                                                                            |
| 22.1                                                                                                                            |
| 22.1                                                                                                                            |
|                                                                                                                                 |
|                                                                                                                                 |

| Parameters in alphabetical order |                    |         |
|----------------------------------|--------------------|---------|
| Parameter                        | Page Header        | Section |
| Pwrff Enable                     | Loop Output        | 20.7    |
| Pwrff Input                      | Loop Output        | 20.7    |
|                                  |                    |         |
|                                  |                    |         |
|                                  |                    |         |
| R                                |                    |         |
| R2G                              | Loop PID           | 20.4    |
| R2G2                             | Loop PID           | 20.4    |
| R2G3                             | Loop PID           | 20.4    |
| Ramp Rate                        | Program 1 to 62    | 21.2    |
| Ramp Units                       | Program 1 to 52    | 21.2    |
| Range Hi                         | Loop Setpoint      | 20.6    |
| Range Lo                         | Loop Setpoint      | 20.6    |
| Range Hi                         | AA Relay           | 8.2     |
| Range Hi                         | Modules            | 9.3     |
| Range Hi                         | PV Input           | 6.8     |
| Range Lo                         | AA Relay           | 8.2     |
| Range Lo                         | Modules            | 9.3     |
| Range Lo                         | PV Input           | 6.8     |
| Range Max                        | Txdr 1 or 10       | 23.5    |
| Range Min                        | Txdr 1 or 9        | 23.5    |
| Rate                             | Loop Output        | 20.7    |
| Rate                             | Loop Setpoint      | 20.6    |
| RateDone                         | Loop Setpoint      | 20.6    |
| Reference                        | AnAlm 1 to 10      | 11.4    |
| RelHumid                         | Humidity           | 15.2    |
| RemOPH                           | Loop Output        | 20.7    |
| RemOPL                           | Loop Output        | 20.7    |
| Remote Input                     | Loop PID           | 20.4    |
| RemGasEn                         | Zirconia           | 15.4    |
| RemGasRef                        | Zirconia           | 15.4    |
| Res                              | PV Input           | 6.8     |
| Reset                            | Counter 1 to 9     | 14.1    |
| Reset                            | IPMonitor 1 to 4   | 16.2    |
| Reset                            | totaliser 1 to 10  | 14.3    |
| Reset Events                     | Programmer Summary | 1.13    |
| Res'n                            | Comms H or J       | 13.3    |
| Res'n                            | Humidity           | 15.2    |
| Res'n                            | Load               | 19.1    |
| Res'n                            | Modules            | 9.3     |

244.



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com

Aug-04

Part No HA027988 Issue 3.0

| Parameters in order of page header |                   |         |
|------------------------------------|-------------------|---------|
| Parameter                          | Page Header       | Section |
| Switch PV                          | Switch Over       | 22.1    |
|                                    | Totaliser 1 to 2  |         |
| Alarm SP                           | totaliser 1 to 2  | 14.3    |
| TotalOp                            | totaliser 1 to 3  | 14.3    |
| Alarm OP                           | totaliser 1 to 4  | 14.3    |
| Units                              | totaliser 1 to 5  | 14.3    |
| Res'n                              | totaliser 1 to 6  | 14.3    |
| In                                 | totaliser 1 to 7  | 14.3    |
| Run                                | totaliser 1 to 8  | 14.3    |
| Hold                               | totaliser 1 to 9  | 14.3    |
| Reset                              | totaliser 1 to 10 | 14.3    |
|                                    | BCDin 1 and 2     |         |
| In1                                | BCDin 1 and 2     | 12.1    |
| In2                                | BCDin 1 and 3     | 12.1    |
| In3                                | BCDin 1 and 4     | 12.1    |
| In4                                | BCDin 1 and 5     | 12.1    |
| In5                                | BCDin 1 and 6     | 12.1    |
| In6                                | BCDin 1 and 7     | 12.1    |
| In7                                | BCDin 1 and 8     | 12.1    |
| In8                                | BCDin 1 and 9     | 12.1    |
| Dec Value                          | BCDin 1 and 10    | 12.1    |
| BCD Value                          | BCDin 1 and 11    | 12.1    |
| Units                              | BCDin 1 and 12    | 12.1    |
| Tens                               | BCDin 1 and 13    | 12.1    |
|                                    | Txdr 1 or 2       |         |
| Cal Type                           | Txdr 1 or 2       | 23.5    |
| Input Value                        | Txdr 1 or 3       | 23.5    |
| Cal Enable                         | Txdr 1 or 4       | 23.5    |
| Clear Cal                          | Txdr 1 or 5       | 23.5    |
| Start Cal                          | Txdr 1 or 6       | 23.5    |
| Start Hi Cal                       | Txdr 1 or 7       | 23.5    |
| Start Tare                         | Txdr 1 or 8       | 23.5    |
| Range Min                          | Txdr 1 or 9       | 23.5    |
| Range Max                          | Txdr 1 or 10      | 23.5    |
| Tare Value                         | Txdr 1 or 11      | 23.5    |
| Input Hi                           | Txdr 1 or 12      | 23.5    |
| Input Lo                           | Txdr 1 or 13      | 23.5    |
| Scale Hi                           | Txdr 1 or 14      | 23.5    |
| Scale Lo                           | Txdr 1 or 15      | 23.5    |
| Cal Band                           | Txdr 1 or 16      | 23.5    |

| Parameters in alphabetical order |                    |         |
|----------------------------------|--------------------|---------|
| Parameter                        | Page Header        | Section |
| Res'n                            | totaliser 1 to 6   | 14.3    |
| Res'n                            | UsrVal 1 to 17     | 24.1    |
| Res'n                            | Zirconia           | 15.4    |
| Ripple Carry                     | Counter 1 to 4     | 14.1    |
| RTClock En                       | Inst Options       | 5.3     |
| Run                              | totaliser 1 to 8   | 14.3    |
| Run/Hold Func                    | Access             | 2.2     |
| s                                |                    |         |
| Safe OP                          | Loop Output        | 20.7    |
| Sbreak                           | Humidity           | 15.2    |
| SBrk Alarm                       | PV Input           | 6.8     |
| SBrk Type                        | PV Input           | 6.8     |
| SBrk Value                       | PV Input           | 6.8     |
| SBrk Alarm                       | Modules            | 9.3     |
| Sbrk Mode                        | Loop Output        | 20.7    |
| SBrk Type                        | Modules            | 9.3     |
| SBrk Value                       | Modules            | 9.3     |
| Scale Hi                         | Txdr 1 or 14       | 23.5    |
| Scale Lo                         | Txdr 1 or 15       | 23.5    |
| Sched Type                       | Loop PID           | 20.4    |
| Seg Time Left                    | Programmer Summary | 1.13    |
| Segment                          | Program 1 to 54    | 21.2    |
| Segment                          | Programmer Summary | 1.13    |
| Segment Type                     | Program 1 to 55    | 21.2    |
| Segments Used                    | Program 1 to 50    | 21.2    |
| Segments Left                    | Inst Diagnostics   | 5.6     |
| Select                           | Mux10              | 17.4    |
| Selected IP                      | Switch Over        | 22.1    |
| Serial Num                       | Inst Information   | 5.5     |
| Servo                            | Program All        | 21.2    |
| Shunt                            | Modules            | 9.3     |
| SkipSeg                          | Programmer Summary | 1.13    |
| SootAlm                          | Zirconia           | 15.4    |
| SP HighLim                       | Loop Setpoint      | 20.6    |
| SP Input                         | Program All        | 21.2    |
| SP LowLim                        | Loop Setpoint      | 20.6    |
| SP Select                        | Loop Setpoint      | 20.6    |
| SP1                              | Loop Setpoint      | 20.6    |
| SP2                              | Loop Setpoint      | 20.6    |
| SPTrack                          | Loop Setpoint      | 20.6    |
|                                  |                    | 1       |

Part No HA027988 Issue 3.0 Aug-04

PRÉCONISATEUR DE SOLUTIONS DEPUIS 1985

2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

| Parameters in order of page header |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Page Header                        | Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Txdr 1 or 17                       | 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Txdr 1 or 18                       | 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Txdr 1 or 19                       | 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Txdr 1 or 20                       | 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| RTClock                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| RTClock                            | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Counter 1 to 2                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Counter 1 to 2                     | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Counter 1 to 3                     | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Counter 1 to 4                     | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Counter 1 to 5                     | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Counter 1 to 6                     | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Counter 1 to 7                     | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Counter 1 to 8                     | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Counter 1 to 9                     | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Counter 1 to 10                    | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| UsrVal 1 to 16                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| UsrVal 1 to 16                     | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| UsrVal 1 to 17                     | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| UsrVal 1 to 18                     | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| UsrVal 1 to 19                     | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| UsrVal 1 to 20                     | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| UsrVal 1 to 21                     | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Lgc8                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Lgc8                               | 17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Lgc8                               | 17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Lgc8                               | 17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                    | Page HeaderTxdr 1 or 17Txdr 1 or 18Txdr 1 or 19Txdr 1 or 20RTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockRTClockCounter 1 to 2Counter 1 to 2Counter 1 to 3Counter 1 to 4Counter 1 to 5Counter 1 to 5Counter 1 to 7Counter 1 to 7Counter 1 to 7Counter 1 to 8Counter 1 to 9Counter 1 to 10UsrVal 1 to 16UsrVal 1 to 17UsrVal 1 to 18UsrVal 1 to 20UsrVal 1 to 20UsrVal 1 to 21Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8Lgc8 <trtr>Lgc8<trtr>Lgc8Lgc8</trtr></trtr> |  |  |

| Parameters in alphabetical order |                            |         |
|----------------------------------|----------------------------|---------|
| Parameter                        | Page Header                | Section |
| SPTrim                           | Loop Setpoint              | 20.6    |
| SPTrim Hi                        | Loop Setpoint              | 20.6    |
| SPTrim Lo                        | Loop Setpoint              | 20.6    |
| Stage                            | Loop Tune                  | 20.5    |
| Stage Time                       | Loop Tune                  | 20.5    |
| Standby                          | Access                     | 2.2     |
| Start Cal                        | Txdr 1 or 6                | 23.5    |
| Start Hi Cal                     | Txdr 1 or 7                | 23.5    |
| Start Tare                       | Txdr 1 or 8                | 23.5    |
| State                            | Loop Tune                  | 20.5    |
| Status                           | IOExp                      | 10.1    |
| Status                           | Lin16                      | 18.1    |
| Status                           | Logic Operators Lgc 1 to 8 | 17.1    |
| Status                           | Math2 1 to 32              | 17.3    |
| Status                           | Modules                    | 9.3     |
| Status                           | Mux22                      | 17.4    |
| Status                           | Polynomial                 | 18.2    |
| Status                           | Programmer Summary         | 1.13    |
| Status                           | PV Input                   | 6.8     |
| Status                           | Switch Over                | 22.1    |
| Status                           | UsrVal 1 to 21             | 24.1    |
| String Count                     | Inst Diagnostics           | 5.6     |
| String Space                     | Inst Diagnostics           | 5.6     |
| Switch PV                        | Switch Over                | 22.1    |
| Switch Hi                        | Switch Over                | 22.1    |
| Switch Lo                        | Switch Over                | 22.1    |
| SwOver En                        | Inst Options               | 5.3     |
| Sync Input                       | Program All                | 21.2    |
| SyncMode                         | Program All                | 21.2    |
| т                                |                            |         |
| Tare Value                       | Txdr 1 or 11               | 23.5    |
| Target                           | Counter 1 to 7             | 14.1    |
| Target SP                        | Loop Main                  | 20.2    |
| Target SP                        | Program 1 to 61            | 21.2    |
| TC1                              | Load                       | 19.1    |
| TempInput                        | Zirconia                   | 15.4    |
| [empOffset                       | Zirconia                   |         |
|                                  |                            |         |
|                                  |                            |         |
| TC2                              | Load                       | 19.1    |

246.



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

Aug-04

Part No HA027988 Issue 3.0

| Parameters in order of page header |                            |         |  |
|------------------------------------|----------------------------|---------|--|
| Parameter                          | Page Header                | Section |  |
| In2                                | Lgc8                       | 17.2    |  |
| In3                                | Lgc8                       | 17.2    |  |
| In4                                | Lgc8                       | 17.2    |  |
| In5                                | Lgc8                       | 17.2    |  |
| In6                                | Lgc8                       | 17.2    |  |
| In7                                | Lgc8                       | 17.2    |  |
| In8                                | Lgc8                       | 17.2    |  |
| Out                                | Lgc8                       | 17.2    |  |
| Out Invert                         | Lgc8                       | 17.2    |  |
|                                    | Logic Operators Lgc 1 to 2 |         |  |
| Oper                               | Logic Operators Lgc 1 to 2 | 17.1    |  |
| Input1                             | Logic Operators Lgc 1 to 3 | 17.1    |  |
| Input2                             | Logic Operators Lgc 1 to 4 | 17.1    |  |
| Fall Type                          | Logic Operators Lgc 1 to 5 | 17.1    |  |
| Invert                             | Logic Operators Lgc 1 to 6 | 17.1    |  |
| Output                             | Logic Operators Lgc 1 to 7 | 17.1    |  |
| Status                             | Logic Operators Lgc 1 to 8 | 17.1    |  |
|                                    | Humidity                   |         |  |
| RelHumid                           | Humidity                   | 15.2    |  |
| DewPoint                           | Humidity                   | 15.2    |  |
| Res'n                              | Humidity                   | 15.2    |  |
| WetOffs                            | Humidity                   | 15.2    |  |
| WetT                               | Humidity                   | 15.2    |  |
| DryT                               | Humidity                   | 15.2    |  |
| Sbreak                             | Humidity                   | 15.2    |  |
| PsycK                              | Humidity                   | 15.2    |  |
| Pressure                           | Humidity                   | 15.2    |  |
|                                    | IOExp                      |         |  |
| Expander Type                      | IOExp                      | 10.1    |  |
| Status                             | ЮЕхр                       | 10.1    |  |
| In 1-10                            | IOExp                      | 10.1    |  |
| In 11-20                           | ЮЕхр                       | 10.1    |  |
| Out21-30                           | ЮЕхр                       | 10.1    |  |
| Out31-40                           | IOExp                      | 10.1    |  |
| Inv21-30                           | IOExp                      | 10.1    |  |
| Inv31-40                           | ЮЕхр                       | 10.1    |  |
| In1 to In20                        | ЮЕхр                       | 10.1    |  |
| Out21 to Out40                     | IOExp                      | 10.1    |  |
|                                    |                            |         |  |
|                                    |                            |         |  |

| Parameters in alphabetical order |                  |         |
|----------------------------------|------------------|---------|
| Parameter                        | Page Header      | Section |
| Td                               | Loop PID         | 20.4    |
| Td2                              | Loop PID         | 20.4    |
| Td3                              | Loop PID         | 20.4    |
| Tens                             | BCDin 1 and 13   | 12.1    |
| Threshold                        | AnAlm 1 to 11    | 11.4    |
| Threshold                        | IPMonitor 1 to 2 | 16.2    |
| Ti                               | Loop PID         | 20.4    |
| Ti2                              | Loop PID         | 20.4    |
| Ti3                              | Loop PID         | 20.4    |
| Time                             | RTClock          | 14.4    |
| Time                             | Timer 1 to 6     | 14.2    |
| Time2Clean                       | Zirconia         | 15.4    |
| Time Above                       | IPMonitor 1 to 7 | 16.2    |
| Timer En                         | Inst Options     | 5.3     |
| Tolerance                        | Zirconia         | 15.4    |
| Totalise En                      | Inst Options     | 5.3     |
| TotalOp                          | totaliser 1 to 3 | 14.3    |
| TrackEn                          | Loop Output      | 20.7    |
| TrackOP                          | Loop Output      | 20.7    |
| TrackPV                          | Loop Setpoint    | 20.6    |
| TrackSP                          | Loop Setpoint    | 20.6    |
| Triggered                        | Timer 1 to 7     | 14.2    |
| TrScale En                       | Inst Options     | 5.3     |
| Туре                             | AnAlm 1 to 8     | 11.4    |
| Туре                             | Load             | 19.1    |
| Туре                             | Timer 1 to 8     | 14.2    |
| U                                |                  |         |
| UI Stack Free                    | Inst Diagnostics | 5.6     |
| UI Ticks                         | Inst Diagnostics | 5.6     |
| Units                            | BCDin 1 and 12   | 12.1    |
| Units                            | Inst Display     | 5.4     |
| Units                            | Lin16            | 18.1    |
| Units                            | Load             | 19.1    |
| Units                            | Modules          | 9.3     |
| Units                            | Polynomial       | 18.2    |
| Units                            | PV Input         | 6.8     |
| Units                            | totaliser 1 to 5 | 14.3    |
| Units                            | UsrVal 1 to 16   | 24.1    |
| UsrVal En1                       | Inst Options     | 5.3     |
| UsrVal En2                       | Inst Options     | 5.3     |

Part No HA027988

Issue 3.0 Aug-04

PRÉCONISATEUR DE SOLUTIONS DEPUIS 1985

2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

| ParameterPage HeaderZirconiaProbe TypeZirconiaRes'nZirconiaGasRefZirconiaRemGasRefZirconiaRemGasEnZirconiaMinCalTempZirconiaOxygenExpZirconiaCleanFreqZirconiaCleanTimeZirconiaMinRcovTimeZirconiaMaxRcovTimeZirconiaTobelnputZirconiaProbelnputZirconiaProbelnputZirconiaOxygenZirconiaProbelnputZirconiaProbelnputZirconiaOxygenZirconiaOxygenZirconiaProbelnputZirconiaCarbonPotZirconiaProbeFaultZirconiaProbeFaultZirconiaCleanValveZirconiaCleanStateZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaClea                                                                             | Parameters in order of page header |          |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------|------|
| ZirconiaProbe TypeZirconiaRes'nZirconiaGasRefZirconiaRemGasRefZirconiaRemGasEnZirconiaMinCalTempZirconiaOxygenExpZirconiaCleanFreqZirconiaCleanTimeZirconiaMinRcovTimeZirconiaMaxRcovTimeZirconiaTempInputZirconiaProbeInputZirconiaProbeOffsetZirconiaOxygenZirconiaProbeOffsetZirconiaProbeOffsetZirconiaOxygenZirconiaOxygenZirconiaProbeOffsetZirconiaOxygenZirconiaCarbonPotZirconiaProbeFaultZirconiaProbeFaultZirconiaCleanValveZirconiaCleanStateZirconiaCleanProbeZirconiaTime2CleanZirconia                                                                                                                                                                                                                                                                                                                                                                                                     | Parameter Page Header Sect         |          |      |
| Probe TypeZirconiaRes'nZirconiaGasRefZirconiaRemGasRefZirconiaRemGasEnZirconiaMinCalTempZirconiaOxygenExpZirconiaCleanFreqZirconiaCleanFreqZirconiaMinRcovTimeZirconiaMaxRcovTimeZirconiaTempInputZirconiaProbeInputZirconiaOxygenZirconiaOxygenZirconiaCleanTimeZirconiaMaxRcovTimeZirconiaMortopotZirconiaProbeInputZirconiaOxygenZirconiaOxygenZirconiaOxygenZirconiaProbeOffsetZirconiaOxygenZirconiaCarbonPotZirconiaProbeFaultZirconiaProbeFaultZirconiaCleanValveZirconiaCleanStateZirconiaTime2CleanZirconia                                                                                                                                                                                                                                                                                                                                                                                      |                                    | Zirconia |      |
| Res'nZirconiaGasRefZirconiaRemGasRefZirconiaRemGasEnZirconiaMinCalTempZirconiaOxygenExpZirconiaCleanFreqZirconiaCleanFreqZirconiaMinRcovTimeZirconiaMaxRcovTimeZirconiaTempInputZirconiaProbeInputZirconiaOxygenZirconiaOxygenZirconiaCleanTimeZirconiaMaxRcovTimeZirconiaProbeInputZirconiaProbeOffsetZirconiaOxygenZirconiaOxygenZirconiaProbeOffsetZirconiaOxygenZirconiaCarbonPotZirconiaProbeFaultZirconiaProbeFaultZirconiaCleanValveZirconiaCleanStateZirconiaTime2CleanZirconia                                                                                                                                                                                                                                                                                                                                                                                                                   | Probe Type                         | Zirconia | 15.4 |
| GasRefZirconiaRemGasRefZirconiaRemGasEnZirconiaMinCalTempZirconiaOxygenExpZirconiaToleranceZirconiaCleanFreqZirconiaCleanTimeZirconiaMinRcovTimeZirconiaMaxRcovTimeZirconiaTempInputZirconiaProbeInputZirconiaOxygenZirconiaOxygenZirconiaProbeOffsetZirconiaOxygenZirconiaOxygenZirconiaProbeOffsetZirconiaOxygenZirconiaCarbonPotZirconiaProbeFaultZirconiaProbeFaultZirconiaCleanValveZirconiaCleanStateZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconia </td <td>Res'n</td> <td>Zirconia</td> <td>15.4</td>                       | Res'n                              | Zirconia | 15.4 |
| RemGasRefZirconiaRemGasEnZirconiaMinCalTempZirconiaOxygenExpZirconiaCleanFreqZirconiaCleanFreqZirconiaMinCovTimeZirconiaMaxRcovTimeZirconiaMaxRcovTimeZirconiaProbeInputZirconiaProbeOffsetZirconiaOxygenZirconiaOxygenZirconiaProbeOffsetZirconiaOxygenZirconiaProbeOffsetZirconiaOxygenZirconiaCarbonPotZirconiaProbeFaultZirconiaProbeFaultZirconiaCleanValveZirconiaCleanStateZirconiaCleanProbeZirconiaTime2CleanZirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GasRef                             | Zirconia | 15.4 |
| RemGasEnZirconiaMinCalTempZirconiaOxygenExpZirconiaToleranceZirconiaCleanFreqZirconiaCleanTimeZirconiaMinRcovTimeZirconiaMaxRcovTimeZirconiaTempInputZirconiaTempOffsetZirconiaProbeInputZirconiaOxygenZirconiaCarbonPotZirconiaSootAlmZirconiaProbeFaultZirconiaCleanStateZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanStateZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbe <td< td=""><td>RemGasRef</td><td>Zirconia</td><td>15.4</td></td<> | RemGasRef                          | Zirconia | 15.4 |
| MinCalTempZirconiaOxygenExpZirconiaToleranceZirconiaCleanFreqZirconiaCleanTimeZirconiaMinRcovTimeZirconiaMaxRcovTimeZirconiaTempInputZirconiaTempOffsetZirconiaProbeInputZirconiaOxygenZirconiaOxygenZirconiaOxygenZirconiaProbeOffsetZirconiaOxygenZirconiaProbeFaultZirconiaDewPointZirconiaProbeFaultZirconiaCleanValveZirconiaCleanStateZirconiaCleanProbeZirconiaTime2CleanZirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RemGasEn                           | Zirconia | 15.4 |
| OxygenExpZirconiaToleranceZirconiaCleanFreqZirconiaCleanTimeZirconiaMinRcovTimeZirconiaMaxRcovTimeZirconiaTempInputZirconiaTempOffsetZirconiaProbeInputZirconiaOxygenZirconiaCarbonPotZirconiaDewPointZirconiaProbeFaultZirconiaCleanValveZirconiaCleanStateZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbe                                                                | MinCalTemp                         | Zirconia | 15.4 |
| ToleranceZirconiaCleanFreqZirconiaCleanTimeZirconiaMinRcovTimeZirconiaMaxRcovTimeZirconiaTempInputZirconiaTempOffsetZirconiaProbeInputZirconiaOxygenZirconiaCarbonPotZirconiaDewPointZirconiaSootAlmZirconiaProbeFaultZirconiaCleanValveZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbe <t< td=""><td>OxygenExp</td><td>Zirconia</td><td>15.4</td></t<>  | OxygenExp                          | Zirconia | 15.4 |
| CleanFreqZirconiaCleanTimeZirconiaMinRcovTimeZirconiaMaxRcovTimeZirconiaTempInputZirconiaTempOffsetZirconiaProbeInputZirconiaOxygenZirconiaCarbonPotZirconiaDewPointZirconiaProbeFaultZirconiaCleanValveZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbe <td>Tolerance</td> <td>Zirconia</td> <td>15.4</td>           | Tolerance                          | Zirconia | 15.4 |
| CleanTimeZirconiaMinRcovTimeZirconiaMaxRcovTimeZirconiaTempInputZirconiaTempOffsetZirconiaProbeInputZirconiaOxygenZirconiaCarbonPotZirconiaDewPointZirconiaSootAlmZirconiaProbeFaultZirconiaCleanValveZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbeZirconiaCleanProbe                                                                | CleanFreq                          | Zirconia | 15.4 |
| MinRcovTimeZirconiaMaxRcovTimeZirconiaTempInputZirconiaTempOffsetZirconiaProbeInputZirconiaProbeOffsetZirconiaOxygenZirconiaCarbonPotZirconiaDewPointZirconiaSootAlmZirconiaProbeFaultZirconiaCleanValveZirconiaCleanStateZirconiaCleanProbeZirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CleanTime                          | Zirconia | 15.4 |
| MaxRcovTimeZirconiaTempInputZirconiaTempOffsetZirconiaProbeInputZirconiaProbeOffsetZirconiaOxygenZirconiaCarbonPotZirconiaDewPointZirconiaSootAlmZirconiaProbeFaultZirconiaCleanValveZirconiaCleanStateZirconiaCleanProbeZirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MinRcovTime                        | Zirconia | 15.4 |
| TempInputZirconiaTempOffsetZirconiaProbeInputZirconiaProbeOffsetZirconiaOxygenZirconiaCarbonPotZirconiaDewPointZirconiaSootAlmZirconiaProbeFaultZirconiaCleanValveZirconiaCleanStateZirconiaCleanProbeZirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MaxRcovTime                        | Zirconia | 15.4 |
| TempOffsetZirconiaProbeInputZirconiaProbeOffsetZirconiaOxygenZirconiaCarbonPotZirconiaDewPointZirconiaSootAlmZirconiaProbeFaultZirconiaCleanValveZirconiaCleanStateZirconiaCleanProbeZirconiaCleanProbeZirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TempInput                          | Zirconia | 15.4 |
| ProbeInputZirconiaProbeOffsetZirconiaOxygenZirconiaCarbonPotZirconiaDewPointZirconiaSootAlmZirconiaProbeFaultZirconiaPvFrozenZirconiaCleanValveZirconiaCleanProbeZirconiaCleanProbeZirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TempOffset                         | Zirconia | 15.4 |
| ProbeOffsetZirconiaOxygenZirconiaCarbonPotZirconiaDewPointZirconiaSootAlmZirconiaProbeFaultZirconiaPvFrozenZirconiaCleanValveZirconiaCleanStateZirconiaCleanProbeZirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Probelnput                         | Zirconia | 15.4 |
| OxygenZirconiaCarbonPotZirconiaDewPointZirconiaSootAlmZirconiaProbeFaultZirconiaPvFrozenZirconiaCleanValveZirconiaCleanStateZirconiaCleanProbeZirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ProbeOffset                        | Zirconia | 15.4 |
| CarbonPot Zirconia<br>DewPoint Zirconia<br>SootAlm Zirconia<br>ProbeFault Zirconia<br>PvFrozen Zirconia<br>CleanValve Zirconia<br>CleanState Zirconia<br>CleanProbe Zirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Oxygen                             | Zirconia | 15.4 |
| DewPoint Zirconia<br>SootAlm Zirconia<br>ProbeFault Zirconia<br>PvFrozen Zirconia<br>CleanValve Zirconia<br>CleanState Zirconia<br>CleanProbe Zirconia<br>Time2Clean Zirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CarbonPot                          | Zirconia | 15.4 |
| SootAlm Zirconia<br>ProbeFault Zirconia<br>PvFrozen Zirconia<br>CleanValve Zirconia<br>CleanState Zirconia<br>CleanProbe Zirconia<br>Time2Clean Zirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DewPoint                           | Zirconia | 15.4 |
| ProbeFault Zirconia<br>PvFrozen Zirconia<br>CleanValve Zirconia<br>CleanState Zirconia<br>CleanProbe Zirconia<br>Time2Clean Zirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SootAlm                            | Zirconia | 15.4 |
| PvFrozen Zirconia<br>CleanValve Zirconia<br>CleanState Zirconia<br>CleanProbe Zirconia<br>Time2Clean Zirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ProbeFault                         | Zirconia | 15.4 |
| CleanValve Zirconia<br>CleanState Zirconia<br>CleanProbe Zirconia<br>Time2Clean Zirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PvFrozen                           | Zirconia | 15.4 |
| CleanState Zirconia<br>CleanProbe Zirconia<br>Time2Clean Zirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CleanValve                         | Zirconia | 15.4 |
| CleanProbe Zirconia<br>Time2Clean Zirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CleanState                         | Zirconia | 15.4 |
| Time2Clean Zirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CleanProbe                         | Zirconia | 15.4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time2Clean                         | Zirconia | 15.4 |
| ProbeStatus Zirconia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ProbeStatus                        | Zirconia | 15.4 |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |          |      |

| Parameters in alphabetical order |                  |         |
|----------------------------------|------------------|---------|
| Parameter                        | Page Header      | Section |
| v                                |                  |         |
| Value                            | UsrVal 1 to 20   | 24.1    |
| Version Num                      | Inst Information | 5.5     |
| Voltage                          | Modules          | 9.3     |
| w                                |                  |         |
| WetOffs                          | Humidity         | 15.2    |
| WetT                             | Humidity         | 15.2    |
| Work OP                          | Loop Main        | 20.2    |
| WSP                              | Loop Main        | 20.2    |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |
|                                  |                  |         |

HVS. PRECONISATEUR DE SOLUTIONS DEPUIS 1985

248.

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

#### APPENDIX B SAFETY AND EMC INFORMATION 28.

This controller is manufactured in the UK by Eurotherm Controls Ltd.

Please read this section carefully before installing the controller

This controller is intended for industrial temperature and process control applications when it will meet the requirements of the European Directives on Safety and EMC. If the instrument is used in a manner not specified in this manual, the safety or EMC protection provided by the instrument may be impaired. The installer must ensure the safety and EMC of any particular installation.

#### Safety

This controller complies with the European Low Voltage Directive 73/23/EEC, by the application of the safety standard EN 61010.

#### **Electromagnetic compatibility**

This controller conforms with the essential protection requirements of the EMC Directive 89/336/EEC, by the application of appropriate product specific international standards. This instrument satisfies the general requirements of the commercial and industrial environments defined in EN 61326. For more information on product compliance refer to the Technical Construction File.

#### **GENERAL**

The information contained in this manual is subject to change without notice. While every effort has been made to ensure the accuracy of the information, your supplier shall not be held liable for errors contained herein.

#### Unpacking and storage

The packaging should contain an instrument mounted in its sleeve, two mounting brackets for panel installation and an Installation & Operating guide. Certain ranges are supplied with an input adapter.

If on receipt, the packaging or the instrument are damaged, do not install the product but contact your supplier. If the instrument is to be stored before use, protect from humidity and dust in an ambient temperature range of -10°C to +70°C.

### SERVICE AND REPAIR

This controller has no user serviceable parts. Contact your supplier for repair.

#### Caution: Charged capacitors

Before removing an instrument from its sleeve, disconnect the supply and wait at least two minutes to allow capacitors to discharge. It may be convenient to partially withdraw the instrument from the sleeve, then pause before completing the removal. In any case, avoid touching the exposed electronics of an instrument when withdrawing it from the sleeve.

Failure to observe these precautions may cause damage to components of the instrument or some discomfort to the user.

#### Electrostatic discharge precautions

When the controller is removed from its sleeve, some of the exposed electronic components are vulnerable to damage by electrostatic discharge from someone handling the controller. To avoid this, before handling the unplugged controller discharge yourself to ground.

#### Cleaning

Do not use water or water based products to clean labels or they will become illegible. Isopropyl alcohol may be used to clean labels. A mild soap solution may be used to clean other exterior surfaces of the product.





## INSTALLATION SAFETY REQUIREMENTS

#### Safety Symbols

Various symbols are used on the instrument, they have the following meaning:

Caution (refer to the accompanying documents 😑 Protective Conductor Terminal

#### Personnel

Installation must only be carried out by suitably qualified personnel.

#### Enclosure of live parts

To prevent hands or metal tools touching parts that may be electrically live, the controller must be installed in an enclosure.

### Caution: Live sensors

The controller is designed to operate with the temperature sensor connected directly to an electrical heating element. However you must ensure that service personnel do not touch connections to these inputs while they are live. With a live sensor, all cables, connectors and switches for connecting the sensor must be mains rated.

The logic IO is not isolated from the PV inputs.

#### Wiring

It is important to connect the controller in accordance with the wiring data given in this guide. Take particular care not to connect AC supplies to the low voltage sensor input or other low level inputs and outputs. Only use copper conductors for connections (except thermocouple inputs) and ensure that the wiring of installations comply with all local wiring regulations. For example in the UK use the latest version of the IEE wiring regulations, (BS7671). In the USA use NEC Class 1 wiring methods.

#### **Power Isolation**

The installation must include a power isolating switch or circuit breaker. The device should be mounted in close proximity to the controller, within easy reach of the operator and marked as the disconnecting device for the instrument.

#### **Overcurrent protection**

The power supply to the system should be fused appropriately to protect the cabling to the units.

### Voltage rating

The maximum continuous voltage applied between any of the following terminals must not exceed 264Vac:

- relay output to logic, dc or sensor connections;
- any connection to ground.

The controller must not be wired to a three phase supply with an unearthed star connection. Under fault conditions such a supply could rise above 264Vac with respect to ground and the product would not be safe.

#### **Conductive pollution**

Electrically conductive pollution must be excluded from the cabinet in which the controller is mounted. For example, carbon dust is a form of electrically conductive pollution. To secure a suitable atmosphere, install an air filter to the air intake of the cabinet. Where condensation is likely, for example at low temperatures, include a thermostatically controlled heater in the cabinet.

This product has been designed to conform to BSEN61010 installation category II, pollution degree 2. These are defined as follows:-

Part No HA027988 Aug-04 Issue 3.0


### Installation Category II

The rated impulse voltage for equipment on nominal 230V supply is 2500V.

### **Pollution Degree 2**

Normally only non conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation shall be expected.

### Grounding of the temperature sensor shield

In some installations it is common practice to replace the temperature sensor while the controller is still powered up. Under these conditions, as additional protection against electric shock, we recommend that the shield of the temperature sensor is grounded. Do not rely on grounding through the framework of the machine.

### **Over-Temperature Protection**

When designing any control system it is essential to consider what will happen if any part of the system should fail. In temperature control applications the primary danger is that the heating will remain constantly on. Apart from spoiling the product, this could damage any process machinery being controlled, or even cause a fire.

Reasons why the heating might remain constantly on include:

- the temperature sensor becoming detached from the process
- thermocouple wiring becoming short circuit;
- the controller failing with its heating output constantly on
- an external valve or contactor sticking in the heating condition
- the controller setpoint set too high.

Where damage or injury is possible, we recommend fitting a separate over-temperature protection unit, with an independent temperature sensor, which will isolate the heating circuit.

Please note that the alarm relays within the controller will not give protection under all failure conditions.

### INSTALLATION REQUIREMENTS FOR EMC

To ensure compliance with the European EMC directive certain installation precautions are necessary as follows:

- For general guidance refer to EMC Installation Guide, HA025464.
- When using relay outputs it may be necessary to fit a filter suitable for suppressing the conducted emissions. The filter requirements will depend on the type of load. For typical applications we recommend Schaffner FN321 or FN612.
- If the unit is used in table top equipment which is plugged into a standard power socket, then it is likely that compliance to the commercial and light industrial emissions standard is required. In this case to meet the conducted emissions requirement, a suitable mains filter should be installed. We recommend Schaffner types FN321 and FN612.

### Routing of wires

To minimise the pick-up of electrical noise, the low voltage DC connections and the sensor input wiring should be routed away from high-current power cables. Where it is impractical to do this, use shielded cables with the shield grounded at both ends. In general keep cable lengths to a minimum.



Aug-04

Part No HA027988 Issue 3.0

Part No HA027988 Issue 3.0 Aug-04



Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

# 29. APPENDIX C TECHNICAL SPECIFICATION

All figures quoted at an ambient temperature from 0 to 50°C unless otherwise stated.

### 29.1.1 Control Options

| No. of Loops         | 1                                                                                                  |
|----------------------|----------------------------------------------------------------------------------------------------|
| Control Loops        | On/Off, single PID                                                                                 |
| Control Outputs      | Analogue, Time proportioned or                                                                     |
|                      | Motorised Valve control with or without feedback.                                                  |
| Cooling Algorithms   | Linear, Water, Fan, Oil                                                                            |
| Auto/Manual Control  | Bumpless transfer or forced manual output.                                                         |
| Setpoint rate Limit  | Off to 9999.9 engineering units per minute                                                         |
| Motorised Valve      | Valve Position bounded or unbounded. Individual                                                    |
| Control              | Valve Positions for heat and cool                                                                  |
| Tuning               | One-shot Auto tune or Manual.                                                                      |
| Loop Alarms          | High absolute, Low absolute, Deviation high, Deviation low, Deviation band,                        |
|                      | All with separate hysteresis.                                                                      |
| Application Specific | Humidity control                                                                                   |
| 29.1.2 Display       |                                                                                                    |
| 3504                 | Primary Large 5 digit display, Information centre 16 character header and 3 lines of 20 characters |
| 3508                 | Primary Large 41/2 digit display,                                                                  |
|                      | Information centre 8 character header and 3 lines of 10 characters                                 |
| Technology           | LCD with yellow/green backlight                                                                    |
|                      | Red alarm beacon                                                                                   |
|                      |                                                                                                    |

### 29.1.3 Standard Digital I/O

| Allocation       | 2 Off. Not isolated from each other. Not isolated from the PV inputs.   |
|------------------|-------------------------------------------------------------------------|
|                  | Logic Bi-directional input/outputs                                      |
|                  | Logic or Contact closure input                                          |
| Digital inputs   | Voltage level: input Inactive 0 to 7.3Vdc, Active 10.8V to 24Vdc        |
|                  | Contact closure: input active <480ohms, inactive >1200ohms              |
| Digital outputs  | 18Vdc at 9 to 15mA drive capability.                                    |
| Changeover relay | Contact rating<br>Min Load 1mA at 1V<br>Max Load 2A at 264Vac resistive |
|                  | 1,000,000 operations with addition of external snubber                  |

254.

E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com

#### 29.1.4 All Analogue and PV Inputs

| Sample rate        | 9Hz (110msec.)                                                                                                       |
|--------------------|----------------------------------------------------------------------------------------------------------------------|
| Input filtering    | OFF to 999.9 seconds of filter time constant (f.t.c.). Default setting is 1.6 seconds                                |
| User calibration   | Both the user calibration and a transducer scaling can be applied.                                                   |
| Sensor break       | a.c. sensor break on each input (i.e. fast responding and no dc errors with high impedance sources).                 |
| Ranges             | mV, mA, volts -2V to +10V, -1V to +2V or RTD (pt100), pyrometer inputs                                               |
| Thermocouple types | Most linearisations including K, J, T, R, B, S, N, L, PII, C, D, E with linearisation error $< \pm 0.2^{\circ}$ C    |
|                    | CJC: Automatic (internal), external, 0°C, 45°C, 50°C reference blocks                                                |
| General            | Resolution (noise free) is quoted as a typical figure with f.t.c. set to the default value = $1.6$ second.           |
|                    | Resolution generally improves by a factor of two with every quadrupling of f.t.c.                                    |
|                    | Calibration is quoted as offset error + percentage error of absolute reading at ambient temperature of $25^{\circ}C$ |
|                    | Drift is quoted as extra offset and absolute reading errors per degree of ambient change from 25°C.                  |

# 29.1.5 PV Input

| Accuracy     | ±0.1% ±1lsd             |                                                              |                                                                    |  |
|--------------|-------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|--|
| Sample rate  | 9Hz                     |                                                              |                                                                    |  |
| Input filter | Off, 0.2s to 60s filter | Off, 0.2s to 60s filter time constant. Default setting 1.6s. |                                                                    |  |
| 40mV Range   | Range                   |                                                              | -40mV to +40mV                                                     |  |
|              | Resolution              | 1.9µV (unt                                                   | filtered)                                                          |  |
|              | Measurement noise       | 1.0µV pea                                                    | k to peak with 1.6s input filter.                                  |  |
|              | Linearity error         |                                                              | 0.003% (best fit straight line)                                    |  |
|              | Calibration error       |                                                              | $\pm 4.6 \mu V$ $\pm 0.053\%$ of measurement, at 25C ambient.      |  |
|              | Temperature coefficient |                                                              | $\pm 0.2 \mu V/C$ $\pm 28 ppm/C$ of measurement, from 25C ambient. |  |
|              | Input leakage current   | ±14nA                                                        |                                                                    |  |
|              | Input resistance        |                                                              | 100ΜΩ                                                              |  |
| 80mV Range   | Range                   |                                                              | -80mV to +80mV                                                     |  |
|              | Resolution              | 3.2µV                                                        |                                                                    |  |
|              | Measurement noise       | 3.3µV pea                                                    | k to peak with 1.6s input filter.                                  |  |
|              | Linearity error         |                                                              | 0.003% (best fit straight line)                                    |  |
|              | Calibration error       |                                                              | $\pm 7.5 \mu V$ $\pm 0.052\%$ of measurement, at 25C ambient.      |  |
|              | Temperature coefficient |                                                              | $\pm 0.2\mu$ V/C $\pm 28$ ppm/C of measurement, from 25C ambient.  |  |
|              | Input leakage current   | ±14nA                                                        | 100 10                                                             |  |
|              | Input resistance        |                                                              | 100M22                                                             |  |
| 2V Range     | Range                   |                                                              | -1.4V to +2.0V                                                     |  |
|              | Resolution              | 82µV                                                         |                                                                    |  |
|              | Measurement noise       | 90µV peak                                                    | to peak with 1.6s input filter.                                    |  |
|              | Linearity error         |                                                              | 0.015% (best fit straight line)                                    |  |
|              | Calibration error       |                                                              | $\pm 420\mu$ V $\pm 0.044\%$ of measurement, at 25C ambient.       |  |
|              | Temperature coefficie   | ent                                                          | $\pm 125\mu$ V/C $\pm 28$ ppm/C of measurement, from 25C ambient.  |  |
|              | Input leakage current   | ±14nA                                                        | 100MO                                                              |  |
|              |                         |                                                              |                                                                    |  |
| 10V Range    | Range                   |                                                              | -3.0V to +10V                                                      |  |
|              | Resolution              | 500μV                                                        | h to a should be a factor of filler                                |  |
|              | ivieasurement noise     | 550μν реа                                                    | ak to peak with 1.55 input filter.                                 |  |
|              | Linearity error         |                                                              | Add 0.002% for each 100 of course + load resistance                |  |
|              |                         |                                                              | Auguited and the source + lead resistance.                         |  |

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

|              | Calibration error<br>Temperature coefficient<br>Input resistance                                                         | $\begin{array}{ll} \pm 1.5mV & \pm 0.063\% \mbox{ of measurement, at 25C ambient.} \\ \pm 66 \mu V/C & \pm 60 ppm/C \mbox{ of measurement, from 25C ambient.} \\ 62.5 k\Omega \mbox{ to } 667 k\Omega \mbox{ depending on input voltage.} \end{array}$ |
|--------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PT100        | Range<br>Resolution 50mC<br>Measurement noise 50mC pe<br>Linearity error<br>Calibration error<br>Temperature coefficient | 0 to 400Ω (-200C to +850C)<br>ak to peak with 1.6s input filter.<br>0.033% (best fit straight line)<br>±310mC ±0.023% of measurement in C, at 25C ambient.<br>±10mC/C ±25ppm/C of measurement in C, from 25C                                           |
|              | ambient.<br>Lead Resistance<br>Bulb current                                                                              | $0\Omega$ to $22\Omega,$ matched lead resistances.<br>200 $\mu A$                                                                                                                                                                                      |
| Thermocouple | Uses 40mV and 80mV ranges.<br>Types<br>Linearisation error                                                               | J, K, L, R, B, N, T, S, PL2 and C.<br>±0.2C                                                                                                                                                                                                            |
|              | Internal Cold Junction<br>Calibration error<br>Ambient rejection ra                                                      | ±1.0C at 25C ambient.<br>atio 40:1 from 25C ambient.                                                                                                                                                                                                   |
|              | External Cold Junction                                                                                                   | 0C, 45C and 50C.                                                                                                                                                                                                                                       |

# 29.1.6 Analogue Input Module

| mV input        | 100mV range – used for thermocouple, linear mV source, or 0–20mA with 2.49 $\Omega$ external burden resistor. |
|-----------------|---------------------------------------------------------------------------------------------------------------|
|                 | Calibration: <u>+</u> 10 $\mu$ V + 0.2% of reading                                                            |
|                 | Resolution: 6µV                                                                                               |
|                 | Drift: < $\pm 0.2\mu$ V + 0.004% of reading per <sup>o</sup> C                                                |
|                 | Input impedance: >10M $\Omega$ , Leakage: <10nA                                                               |
| 0 - 2Vdc input  | -0.2V to +2.0V range - used for zirconia.                                                                     |
|                 | Calibration: <u>+</u> 2mV + 0.2% of reading                                                                   |
|                 | Resolution: 30µV                                                                                              |
|                 | Drift: $< \pm 0.1$ mV + 0.004% of reading per °C                                                              |
|                 | Input impedance: >10M $\Omega$ , Leakage: <20nA                                                               |
| 0 - 10Vdc input | -3V to +10.0V range - used for voltage input.                                                                 |
|                 | Calibration: <u>+</u> 2mV + 0.2% of reading                                                                   |
|                 | Resolution: 200µV                                                                                             |
|                 | Drift: < <u>+</u> 0.1mV + 0.02% of reading per <sup>o</sup> C                                                 |
|                 | Input impedance: >69KΩ                                                                                        |
| Pt100 input     | 0 to 400ohms (-200°C to +850°C), 3 matched wires - up to $22\Omega$ in each lead without errors.              |
|                 | Calibration: $\pm (0.4^{\circ}C + 0.15\%)$ of reading in °C)                                                  |
|                 | Resolution: 0.08°C                                                                                            |
|                 | Drift: < $\pm$ (0.015°C + 0.005% of reading in °C) per °C                                                     |
|                 | Bulb current: 0.3mA.                                                                                          |
| Thermocouple    | Internal compensation: CJC rejection ratio >25:1 typical.                                                     |
|                 | CJ Temperature calibration error at 25°C: <± 2°C                                                              |
|                 | 0°C, 45°C and 50°C external compensation available.                                                           |

2 rue René Laennec 51500 Taissy France

Fax: 03 26 85 19 08, Tel : 03 26 82 49 29





#### 29.1.7 **Digital Input Modules**

| Module type     | Triple contact input, Triple logic input           |
|-----------------|----------------------------------------------------|
| Contact closure | Active <100ohms, inactive >28kohms                 |
| Logic inputs    | Current sinking : active 10.8Vdc to 30Vdc at 2.5mA |
|                 | inactive -3 to 5Vdc at <-0.4mA                     |

#### 29.1.8 **Digital Output Modules**

| Module types       | Single relay, dual relay, single triac, dual triac, triple logic module (isolated) |
|--------------------|------------------------------------------------------------------------------------|
| Relay rating       | 2A, 264Vac resistive (100mA, 12V minimum)                                          |
| Single Logic drive | 12Vdc at 24mA                                                                      |
| Triple logic drive | 12V at 9mA per output                                                              |
| Triac rating       | 0.75A, 264Vac resistive                                                            |

#### 29.1.9 Analogue Output Modules

| Module types | 1 channel DC control, 1 channel DC retransmission (5 max.)           |
|--------------|----------------------------------------------------------------------|
| Range        | 0-20mA, 0-10Vdc                                                      |
| Resolution   | 1 part in 10,000 (2,000-noise free) 0.5% accurate for retransmission |
|              | 1 part in 10,000 2.5% accurate for control                           |

# 29.1.10 Transmitter PSU

| Transmitter | 24Vdc at 20mA |
|-------------|---------------|
|             |               |

# 29.1.11 Transducer PSU

| Bridge voltage          | Software selectable 5 or 10Vdc                                              |
|-------------------------|-----------------------------------------------------------------------------|
| Bridge resistance       | $300\Omega$ to $15K\Omega$                                                  |
| Internal shunt resistor | 30.1K $\Omega$ at 0.25%, used for calibration of 350 $\Omega$ bridge at 80% |

## 29.1.12 Potentiometer Input

|  | Pot resistance | 330 $\Omega$ to 15K $\Omega$ | excitation | of 0.5 | volts |
|--|----------------|------------------------------|------------|--------|-------|
|--|----------------|------------------------------|------------|--------|-------|

# 29.1.13 Digital communications

| Allocation         | 2 modules fitted in slots H & J (isolated)                                     |
|--------------------|--------------------------------------------------------------------------------|
| Modbus; El-Bisynch | RS232, 2 wire or 4 wire RS485, max baud 19.2KB in H module & 9.6KB in J module |
| Profibus DP        | High Speed, RS485, 1.5Mbaud ( <b>Slot H only</b> )                             |
| Ethernet           |                                                                                |
| DeviceNet          | Max baud rate 500KB                                                            |

## 29.1.14 Master communications

| Allocation | Slot J                |
|------------|-----------------------|
| Modbus     | RS485 4-wire or RS232 |
| Parameters | 25 read/write         |

## 29.1.15 Alarms

| No of Alarms | 8 Analogue, 8 digital. Can be wired to any internal parameter |
|--------------|---------------------------------------------------------------|
| Alarm types  | Full scale, deviation, sensor break plus application specific |
| Modes        | Latching or non-latching, blocking, time delay                |

Part No HA027988 Issue 3.0 Aug-04



## 29.1.16 Control Functions

| No of loops         | One                                                                  |
|---------------------|----------------------------------------------------------------------|
| Modes               | On/off, PID, motorised valve with or without feedback                |
| Cooling algorithms  | Linear, water, oil or fan                                            |
| PID sets            | 3 per loop                                                           |
| Manual mode         | Bumpless transfer or forced manual output, manual tracking available |
| Setpoint rate limit | Display units per second, minute or hour                             |

# 29.1.17 Setpoint Programmer

| Programmer modes | Synchronous                                                                           |
|------------------|---------------------------------------------------------------------------------------|
| Programmer types | Time to Target or Ramp Rate                                                           |
| No of programs   | A maximum of 50 programs. Programs can be given user defined 16 character names       |
| No of segments   | 200 segments total or 50 per program                                                  |
| Event outputs    | Up to 8, can be assigned individually to segments or called as part of an event group |

## 29.1.18 I/O Expander

| 10 I/O version | 4 changeover relays, 6 normally open relay contacts, 10 logic inputs  |
|----------------|-----------------------------------------------------------------------|
| 20 I/O version | 4 changeover relays, 16 normally open relay contacts, 20 logic inputs |

Aug-04

Part No HA027988 Issue 3.0

| 29.1.19 Advanced Fu | Inctions                                                                                                                                                                                                                            |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Timers              | 4, On Pulse, Off delay, one shot and min-On                                                                                                                                                                                         |
| Totalisers          | 2, trigger level & reset input                                                                                                                                                                                                      |
| Counters            | 2, up or down counters                                                                                                                                                                                                              |
| Real time clock     | Day of week and time                                                                                                                                                                                                                |
| Application blocks  | 24 digital operations                                                                                                                                                                                                               |
|                     | 24 analogue operations                                                                                                                                                                                                              |
|                     | 2 eight input logic operators, 2 eight input analogue operators                                                                                                                                                                     |
|                     | 16 user values                                                                                                                                                                                                                      |
|                     | BCD input                                                                                                                                                                                                                           |
|                     | Customised input linearisations                                                                                                                                                                                                     |
|                     | Mathematical Add, Subtract, Multiply, Divide, Constant, Absolute difference, Maximum, Minimum, Sample and Hold, Input 1 to the power of input 2, Square root, Log(10), Ln, 10 to the power of input 1, i.e. to the power of input 1 |
|                     | Logical AND, OR, XOR, Latch, Equal, Not Equal, Greater than, Less than, Greater than or                                                                                                                                             |
|                     | equal to, Less than or equal to.                                                                                                                                                                                                    |
|                     | Humidity Wet and dry bulb technique                                                                                                                                                                                                 |
| Software Tools      | iTools Configuration Tool                                                                                                                                                                                                           |
|                     | OPC Scope Trending and Data logging                                                                                                                                                                                                 |
|                     | iClone Lite Lightweight configuration cloning                                                                                                                                                                                       |
|                     | Graphical Wiring Editor Drag and drop wiring tool, self-documenting                                                                                                                                                                 |
|                     | View Builder Custom Animation Screens                                                                                                                                                                                               |
|                     | iTools Wizard Question and Answer configuration screens                                                                                                                                                                             |
|                     |                                                                                                                                                                                                                                     |

### 29.1.20 General Specification

| Supply                        | 100 to 240Vac -15%, +10%. 48 to 62Hz. 20 watts max                                                                                                               |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inrush Current                | High Voltage controller – 30A duration 100µs                                                                                                                     |
|                               | Low Voltage controller – 15A duration 100µs                                                                                                                      |
| Operating ambient             | 0°C - 50°C (32°F to 131°F) and 5 to 95% RH non condensing                                                                                                        |
| Storage temp                  | -10°C to +70°C (14°F to 158°F)                                                                                                                                   |
| Panel sealing                 | IP65, plug in from front panel                                                                                                                                   |
| Dimensions and weight         |                                                                                                                                                                  |
| 3504                          | 96H x 96W x 150D (mm)                                                                                                                                            |
| 3508                          | 96H x 48W x 150D (mm)                                                                                                                                            |
| Electromagnetic compatability | EN61326-1 Suitable for domestic, commercial and light industrial as well as heavy industrial environments. (Class B emissions, Industrial Environment immunity). |
|                               | With Ethernet module fitted product is only suitable for industrial environments, (class A emissions).                                                           |
| Safety standards              | EN61010, installation category II (voltage transients must not exceed 2.5kV), pollution degree 2                                                                 |
| Atmospheres                   | Not suitable for use above 2000m or in explosive or corrosive atmospheres                                                                                        |

Part No HA027988 Issue 3.0 Aug-04



2 rue René Laennec 51500 Taissy France E-mail:hvssystem@hvssystem.com Fax: 03 26 85 19 08, Tel : 03 26 82 49 29

Site web : www.hvssystem.com

#### **DECLARATION OF CONFORMITY** 30.



| Manufacturer's name:                                                                                                                                                                                           | Eurothe                                                                                                | erm Limited                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manufacturer's address:                                                                                                                                                                                        | Faraday Close, Worthing, West Sussex,<br>BN13 3PL, United Kingdom<br>Process controller and programmer |                                                                                                                                                                                              |
| Product type:                                                                                                                                                                                                  |                                                                                                        |                                                                                                                                                                                              |
| Models:                                                                                                                                                                                                        | 3504<br>3508                                                                                           | Status level A1 and above<br>Status level A1 and above                                                                                                                                       |
| Safety specification:                                                                                                                                                                                          | EN6101                                                                                                 | 0-1                                                                                                                                                                                          |
| EMC emissions specification:                                                                                                                                                                                   | EN6132                                                                                                 | 6 Class B (Ethernet option: Class A)                                                                                                                                                         |
| EMC immunity specification:                                                                                                                                                                                    | EN6132                                                                                                 | 6 Industrial locations                                                                                                                                                                       |
| EMC emissions specification:<br>EMC immunity specification:<br>Eurotherm Limited hereby declares<br>pecifications listed. Eurotherm L<br>with the EMC Directive 89 / 336 /<br>/oltage Directive 73 / 23 / EEC. | EN6132<br>EN6132<br>that the al<br>imited fur<br>EEC amer                                              | 26 Class B (Ethernet option: Class A<br>26 Industrial locations<br>pove products conform to the safety an<br>ther declares that the above products<br>aded by 93 / 68 / EEC, and also with t |
| 1                                                                                                                                                                                                              | 1-                                                                                                     | Dated: 5th A. aust                                                                                                                                                                           |
| igned: WTGDa                                                                                                                                                                                                   | ins                                                                                                    | Darea. Ori Thighis                                                                                                                                                                           |
| igned: WTBDa<br>Signed for and                                                                                                                                                                                 | on behalf<br>William                                                                                   | of Eurotherm Limited<br>Davis                                                                                                                                                                |

C E This indicator meets the European directives on safety and EMC



260.

### INTERNATIONAL SALES AND SERVICE

AUSTRALIA Sydney Eurotherm Pty. Ltd. Telephone (+61 2) 9838 0099 Fax (+61 2) 98389288

**AUSTRIA** Vienna Eurotherm GmbH Telephone (+43 1) 7987601 Fax (+43 1) 7987605

**BELGIUM** Moha & **LUXEMBURG** Huy Eurotherm S.A./N.V. Telephone (+32) 85 274080 Fax (+32) 85 274081

**BRAZIL** Campinas-SP Eurotherm Ltda. Telephone (+55 19) 3237 3413 Fax (+55 19) 3234 7050

**DENMARK** Copenhagen Eurotherm Danmark A/S Telephone (+45 70) 234670 Fax (+45 70) 234660

**FINLAND** ABO Eurotherm Finland Telephone (+358) 22506030 Fax (+358) 22503201

**FRANCE** Lyon Eurotherm Automation SA Telephone (+33 478) 664500 Fax (+33 478) 352490

**GERMANY** Limburg Eurotherm Deutschland GmbH Telephone (+49 6431) 2980 Fax (+49 6431) 298119 Also regional offices

HONG KONG Aberdeen Eurotherm Limited Telephone (+852) 28733826 Fax (+852) 28700148

INDIA Chennai Eurotherm India Limited Telephone (+9144) 4961129 Fax (+9144) 4961831

IRELAND Dublin Eurotherm Ireland Limited Telephone (+353 01) 4691800 Fax (+353 01) 4691300 **ITALY** Como Eurotherm S.r.l Telephone (+39 031) 975111 Fax (+39 031) 977512

JAPAN Tokyo Densei-Lambda K.K. Eurotherm Division Telephone (+81 3) 5714 0620 Fax (+81 3) 5714 0621

KOREA Seoul Eurotherm Korea Limited Telephone (+82 31) 2868507 Fax (+82 31) 2878508

**NETHERLANDS** Alphen a/d Ryn Eurotherm B.V. Telephone (+31 172) 411752 Fax (+31 172) 417260

**NORWAY** Oslo Eurotherm A/S Telephone (+47 67) 592170 Fax (+47 67) 118301

**SPAIN** Madrid Eurotherm España SA Telephone (+34 91) 6616001 Fax (+34 91) 6619093

**SWEDEN** Malmo Eurotherm AB Telephone (+46 40) 384500 Fax (+46 40) 384545

SWITZERLAND Freienbach Eurotherm Produkte (Schweiz) AG Telephone (+41 55) 4154400 Fax (+41 55) 4154415

UNITED KINGDOM Worthing Eurotherm Limited CONTROLS & DATA MANAGEMENT Telephone (+44 1903) 695888 Fax (+44 1903) 695666 PROCESS AUTOMATION Telephone (+44 1903) 205277 Fax (+44 1903) 236465

**U.S.A** Leesburg Eurotherm Inc. Telephone (+1 703) 443 0000 Fax (+1 703) 669 1300 Web www.eurotherm.com

ED 35

F

© Copyright Eurotherm Limited 2004

All rights are strictly reserved. No part of this document may be reproduced, modified, or transmitted in any form by any means, nor may it be stored in a retrieval system other than for the purpose to act as an aid in operating the equipment to which the document relates, without the prior written permission of Eurotherm limited. Eurotherm Limited pursues a policy of continuous development and product improvement. The specifications in this document may therefore be changed without notice. The information in this document is given in good faith, but is intended for guidance only. Eurotherm Limited will accept no responsibility for any losses arising from errors in this document.

Part No. HA027988 Issue 3

T3508, 3504 Engineering Handbook

Printed in England 09.04



2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:hvssystem@hvssystem.com Site web : www.hvssystem.com